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1.0 SUMMARY

Following a successful demonstration of the field performance of laminated

wood composite blades, on intermediate slze HOD-0A wlnd turbines, a contract

(DEN3-260) was awarded for the Development of Advanced Wood Composite Blade

Technology. Tasks contained within this contract were:

Primary Task - Design and Fabrication of a Two-Bladed, MOD-0 Research Rotor,
with Complete Tip to Tip Wood Composite Construction (flow through

hub design).

Secondary Tasks -

I. Design of a Load Take-Off Stud Test Program and Fabrication of

Stud Test Samples for Evaluation Under a Separate NASA Sponsored

Program.

2. Design of a Wood/Epoxy Laminate Test Program and Fabrication of

Laminate Test Material for Evaluation Under a Separate NASA

Sponsored Program.

3. Design and Conduct Test Programs to Qualify Advanced Composite

Concepts.

4. Design and Fabrication of a Splice Joint Test Article.

5. Design and Fabrication of an Inner Rotor (Hub) Test Article.

Items 4 and 5 above were to be tested at U.S. Government facilities under

NASA-Lewis Research Center (NASA-LeRC) direction and are to support the

design developed within the principal task.

The wood composite rotor structure was designed featuring epoxy laminated

Douglas Fir veneers for the principal structure with some use of synthetic

fibers (E-glass and graphite) for reinforcement of the prototype hub.

Synthetic fiber augmentation was recommended due to the size and quantity of

holes present in the hub region. Variations and simplifications on the outer

rotor structural design, utilized in earlier wood/epoxy blades, were

justified and documented during the conceptual design phase. Adhesive

splicing of the two blades to the hub by use of structural finger joints is

another key feature of this design. Final blade shape was developed in

accordance with a stall-limited, 400 kW (maximum power), 90 foot diameter

specification.

Calculations of margins of safety for various load conditions have been

examined and are documented. The lowest positive margin of safety (3

percent) was calculated in the hub at rotor centerline for the 125 mph wind

(with gusts) extreme wind load case.



Fabrication costs have been estimated for a production version of the rotor

design presented within this report. The costed rotor is assumed to be

simplified, relative to the prototype, by elimination of research specific

features. In 1983 dollars, the cost per rotor was estimated at $25,452 for

the lOOth rotor at a production rate of 120 rotors per year (Note that this

estimate excludes the cost of teetering hardware).

A DOE/NASA reassessment of Wind Energy Program needs resulted in a

termination of the prototype rotor fabrication task. Partially completed

tooling has been placed in storage.

2.0 INTRODUCTION

Wind energy capture technology continues to be developed to compete, in

particular geographical areas, with petroleum fuels and other energy

alternatives for electrical power generation. Much of the continuing

interest in wind energy is due to the encouraging results of earlier

DOE/NASA projects. These efforts succeeded in overcoming many of the

numerous technical obstacles to developing wind energy conversion as a

workable technology. Although wind turbine blade costs have been

significantly reduced due to the application of wood/epoxy composite

technology (refs. I, 2 and 3), it is expected that rotor costs can be

lowered further by continuing the wood/epoxy composite structure across the

rotor centerline. Such a composite hub concept offers two specific cost

advantages over current rotors:

I. Most metallic hub elements are eliminated, thereby avoiding the

cost of expensive forgings.

2. The use of relatively high cost load take-off studs, which

transfer blade loads into the hub, is eliminated.

Conceptual and Preliminary Design efforts were conducted to review and

explore various structural, configuration, and manufacturing options for the

Final Rotor Design effort. Due to the NASA-LeRC reassessment of both

aerodynamic performance as well as the limited MOD-O generator capability at

NASA's Plumbrook Station, where the prototype was scheduled for test, the

rotor diameter specification was changed from 125 feet to 90 feet at the

conclusion of the Conceptual Design phase.

3.0 ROTOR DESIGN SPECIFICATION

The contract required the design of the wood composite rotor to be within

parameters described in this section. The final design specifications are

listed in Table I. Compliance of rotor aerodynamics with specified power

producing characteristics was verified by NASA-LeRC throughout the design

effort.
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3.1 Geometry and Aerodynamics

As specified by NASA-LeRC, the final design rotor was to feature a planform

with the following key parameters:

Diameter 90 ft

Tip Airfoil NACA 64(3)-6XX _

Maximum Power 400 kW

_Thickness to Chord Ratio to be contractor recommended

The tip airfoil was specified by NASA-LeRC due to good lift versus drag and

drag versus thickness characteristics. These features combine to provide

aerodynamically and structurally efficient sections. Furthermore, the same

family of airfoils had been selected for the MOD-5A rotor and commonalty was
considered desirable. The MOD-SA rotor refers to the 400 foot diameter rotor

program conducted by the General Electric Company under DOE/NASA
sponsorship.

3.2 Loads and Design Cases

Preliminary and Final Design operating loads were furnished by NASA-LeRC as

developed from their MOSTAB computer model. These loads are given in Table
II. In Table II, loads are given as a function of radial distance from rotor

centerline, referred to as rotor 'station', in inches, from centerline.

3.3 Rotor to Drivetrain Interface

The contract required that NASA and the contractor jointly develop a load

take-off concept for the teetering hub bearing assembly which is to be NASA

designed and supplied. Here, load take-off refers to a mechanical transfer

of loads from the rotor to the driveshaft assembly. A teetering hub is a hub

design which allows for shedding of peak wind gust loads by allowing the

rotor to pivot about its centerline on a shaft which is perpendicular to the

wind direction. A hard teeter stop load of 170,000 foot-pounds was specified
by NASA during the Final Design phase. A hard teeter stop load is the

highest load to be experienced by the teetering hub mechanism. This load

would occur when the rotor teeters against its mechanical limits. The rotor

is expected to experience this load for less than 5 percent of rotor

operation, which would be approximately 20,000,000 cycles.

3



4.0 ROTOR DESIGNCONCEPT

The contractual effort entailed an evolutionary approach to arrive at a

final design which would meet the NASA-LeRC requirements. This section

describes the rotor design following completion of the final design phase.

4.1 Structural Concepts

The rotor structure can be subdivided into three principal elements. These

are the two blades and the hub, all to be fabricated of wood/epoxy-based

composite plies. Each of the three elements is initially fabricated in

halves which are then bonded into single pieces. Finally all three elements

are joined to form an integral rotor. Clarification of this scheme is given

in Sections 5.3 and 5.4 as well as in Figure 44.

The three elements are joined using two splice joints. These joints are

centered at radial station 43 (inches) to each side of the rotor centerline.

This location was chosen for the following reasons:

i. Allows construction of the hub using single (96 inch long) veneer

sheets, thereby maintaining ease of manufacture and higher design

allowables (by elimination of butt joints within the laminate plies)

in the critically stressed area.

2. Allows rotor contour to change from a constant section

non-tapering hub to a tapering blade shape without manufacturing

restrictions imposed by veneers.

3. Allows all hub hardware to be precisely installed without added

complicattion of an assembly at rotor centerline.

4. Moment loads at the joint are reduced from that existing at rotor

centerline.

Three basic outer rotor structural design cases were presented for NASA

review during the Conceptual Design phase. Each case could be engineered to

have acceptable capability against identified loads. The cases were:

A. All veneer structure, with constant thickness from leading edge

to single shear web and decreasing thickness from shear web to

trailing edge as shown in Figure i. Note that dimensions given in

all figures are in inches.

B. Principal structural laminate forward with single shearweb and

paper honeycomb/plywood skin tailpanel construction as shown in

Figure 2.

C. All veneer structure, with constant thickness from leading to

trailing edge and with single shear web as shown in Figure 3.



At the time of the Conceptual Design Review, upon Gougeon Brothers, Inc.

(GBI) recommendation, NASA rejected Concept B for further study. The

cost/benefit relationship of Concept B did not compare favorably with

Concepts A and C. This was primarily due to the more efficient placement of

structural material in the latter two concepts and significantly lower

manufacturing complexity and cost.

At the time of the Preliminary Design Review, NASA accepted Concept C for

the Final Design effort. This decision was based upon a GBI demonstration

that the aerodynamic flutter susceptibility difference between the Concepts

A and C was insignificant when the torsional stiffness of the respective

sections was taken into account. It was also shown that, due to panel

buckling concerns, any weight savings expected from Concept A relative to

Concept C would be minimal. Furthermore, it was identified that any such

weight savings would be negated in rotor cost due to the additional

manufacturing complexity involved in stepping down the shell thickness in

the proposed chordwise fashion.

4.2 Rotor Geometry

A final rotor geometry was approved by NASA-LeRC featuring the following

principal dimensions and is shown in Figure 4:

Tip Airfoil

Tip Chord

Inner Airfoil (at Station 156_)

Chord at Inner Airfoil

Twist

Splice Joint Centerline

Hub Chord

Hub Thickness

Est. Prototype Weight

NACA 64(3)-618 (modified)

24.0 in.

NACA 0028_

64.75 in.

Zero degrees

Station 43

57.5 in.

21.9 in.

4522 lbs.

_Station number is dimension in inches from rotor centerline.

_-_Defined inner airfoil is used for developing all intermediate

airfoils through linear interpolation. The actual airfoils from

Stations 156 to 180 are modified due to the need to smoothly

transition from the aerodynamic portion of the rotor into a hub

shape.



Airfoil selection was guided by structural as well as aerodynamic

considerations. The NACA 64(3)-series foils (also specified for MOD-5A)

provide good lift versus drag characteristics. A symmetrical NACA O0-series

foil was proposed for the defining inboard station. This foil simplifies the

transition of airfoil shapes into a nearly symmetrical hub section, over

limited span, which minimizes wood veneer compounding complications.

Asymmetric and particularly reflexive inboard foils would have made the

inboard shape transition task extremely challenging for simplified wood

composite construction techniques. All foils between this symmetric foil and

the tip would be straight line interpolations of the two defined foils.

Thee inner airfoil thickness-to-chord ratio was minimized while maintaining

structural adequacy. Also, the outer rotor design was adjusted slightly to

provide NASA with the option of fabricating individual blades, with a root

geometry suitable for a bonded stud load take off, from the same tooling.

These individual blades would incorporate the standard MOD-OA stud pattern

and could be used for a related wind energy development project.

The outer rotor was designed with zero degrees actual twist between the

defining airfoils at Stations 156 and 540. However, due to a shift in the

angle of zero lift, the aerodynamic twist between these same two airfoils

would be 3 to 3.5 degrees.

The proposed final design contour was evaluated by Wichita State University,

under a separate NASA contract, for annual energy capture. Although GBI

recommended zero degrees of geometric blade twist, for desirable progressive

stalling properties, it was shown that a trade-off existed between

maximizing energy capture and optimizing power limiting characteristics. The

final design rotor was accepted by NASA, with no geometric twist from

centerline to tip, while acknowledging the recognized energy capture

shortcomings.

The rotor diameter was the only physical dimension initially specified by

NASA, while those dimensions pertaining to the aerodynamic portion of the

rotor were initially recommended by GBI during the preliminary design phase

and evaluated for acceptable performance by NASA. The outer rotor geometry

was developed by coordinating airfoil selection with structural assessment.

The geometry of the inner, non-power producing portion of the rotor was

driven strictly by structural and load take-off considerations. A summary of

geometric properties is presented in Table IIl. The final general hub

configuration can be seen in Figures 5 and 6 (Note that both the upwind and

downwind rotor configurations are shown).

4.3 Inner Rotor Hardware and Load Take-Off

The hardware proposed for the rotor hub generally falls into two categories.

First, there is hardware which is removable and was to undergo detailed

design and be provided by NASA. Secondly, hardware which is to be bonded



into the laminate structure as the specific load take-off element, was
designed by the contractor, and was to be furnished with the rotor.

Two principal load take-off schemes were under consideration during the

conceptual stage of design. One concept featured a load take-off through the

edge laminate via bonded in place teeter bearings as is shown in Figure 7.

This design featured flexibility for upwind as well as downwind configuring

of a prototype rotor. This could take place by bringing the low speed shaft

of the machine into the hub through holes in both the upwind and downwind

faces of the hub. Hardware access and removal also appeared to be
straightforward with this concept.

The other concept shared similarities to the first with the exception of a
load take-off through metallic sleeves bonded into a thickened laminate in

the hub and attaching to the teeter bearing bases with through-bolts as is
shown in Figure 8. Because of the thickened laminate, the load transfer

plane would be very near the flatwise neutral axis of the hub section,

minimizing the effect of bending strain. Fastening, rather than bonding, of
the teeter bearings would allow indexing the delta-three angle of the

prototype rotor by providing multiple attachment options. The delta-three

angle is the angle between the rotor's teeter axis and a line perpendicular

to the rotor's spanwise centerline as shown in Figure 8. It couples blade

pitching to blade teetering (or flapping). Non-zero delta-three settings of
a teetered rotor are known to offer the following effects:

1. Positive delta-three angles couple the blade pitching to blade

teetering in such a way that an aerodynamic force component is
generated that opposes the teeter motion. Positive delta-three

angles have been shown to allow for more rapid yaw rates of a wind

turbine while restraining teeter motion, and suppressing teeter
motion at high yaw angles (refs. 4 and 5).

2. Non-zero delta-three angles have been shown to improve the

accuracy with which a wind turbine machine, in free yaw, will align
itself with the wind, thereby maximizing wind energy capture.

NASA-LeRC desired to investigate the effects of various delta-three settings
on this rotor because earlier work (ref. 4) indicated that the

interrelationship of delta-three angle and other rotor parameters such as

coning and airfoil shape upon wind turbine machine operating characteristics

are not precisely known. Delta-three angles of zero as well as +/- 22.5, +/-
45, and +/- 67.5 degrees are offered.

The ease of access to the teeter hardware was not as apparent with this

design. However, a three dimensional mockup was fabricated by NASA which

demonstrated that the access would be adequate. Following this

demonstration, NASA elected the concept offering variable delta-three angles
for the Final Design effort.

As discussed previously, the hub hardware serving to interface the composite
hub to the low speed shaft is principally an array of fastener sleeves



bonded into a thickened region of the composite hub structure. The actual

attachment of the metal teeter hardware to the composite hub takes place via

through-bolts. These bolts capture both the teeter bearing bases near the

interior laminate surface and also a welded teeter stop structure to the

exterior laminate surface. The fastener arrangement, as shown in Figure 9,

serves principally to transfer rotor torque and thrust into the teeter shaft

through two teeter bearing bases. See Appendix A for the analysis of torque

loads on these fasteners. The evaluated loads will yield very high positive

margins in this area of the design. Sufficient numbers of the bonded

fastener sleeves are placed in the hub laminate to allow the prototype rotor

to be configured for all specified delta-three angles. The teeter shaft

completes the transfer of rotor torque and thrust to the low speed shaft

while relieving the rotor of gust loads.

For the prototype rotor, two teeter stop and damping schemes were

considered. The first incorporated elastomeric 'bumpers' to stabilize

intermediate teeter excursions. Direct contact between the low speed shaft

and a steel weldment attached to the laminated hub would occur only when the

elastomeric bumpers failed to singularly react higher rotor teeter moments.

The second scheme was to use a pair of hydraulic dampers or shock absorber

mechanisms. These would attach externally to the hub and extend to a low

speed shaft attachment. The dampers would serve to reduce the normal teeter

stop loads on the rotor and could also be designed with internal 'hard

stops'. An added feature of this system was the capability of developing

variable damping as a function of teetering angle. Dampers could also be

utilized, on the prototype machine, with adjustable valving to allow for

optimizing the teetering behavior. Stock, high-capacity dampers were

identified which might serve in this function. A load take-off provision for

the first teeter stop scheme was designed by NASA, while provisions for the

second scheme were designed by GBI and are shown in Figure i0.

4.4 Instrumentation

Principal instrumentation on the prototype rotor was to include pressure

taps, angle of attack indicators, ice detection, and strain gages. The

pressure taps and angle of attack indicators were specified for installation

on only one blade of the rotor.

Stainless steel pressure taps were specified by NASA to be installed at

three spanwise locations (near 50, 75, and 90 percent of span). Twenty four

pressure taps were to be arrayed chordwise (twelve on each surface) at each

spanwise location as shown in Figure ll. Provisions for the installation of

three angle-of-attack probes, to be installed near each of the pressure tap

sets were also developed as required. This is shown in Figure 12. It was

also specified that the contractor provide three watertight enclosures and

conduit for electrical cables, for the necessary electronic signal

conditioning devices, in proximity to the pressure tap locations. Access to



these enclosures was to be provided via cover plates. These provisions were
designed and are illustrated in Figures 13, 14, 15, and 16.

4.5 Miscellaneous Provisions

At the conceptual design level, the design specification included
incorporation of aerodynamic tip brakes. The tip brake design concepts are
summarized in Appendix B. Further aerodynamic tip brake design and
development was not pursued.

It was specified by NASAthat GBI furnish provisions for ice detectors,
addition of tip weights, and tip venting. Ice detection maybe desired at
specific sites where icing conditions would necessitate rotor shutdown. Tip
weights could be added if any post-production balancing of the rotor would
be required. The venting serves to prevent pressurization of the structure
with changes in temperature or atmospheric pressure experienced when shipped

over routes with extreme altitude changes and also to prevent internal

moisture buildup. Figure 17 illustrates the details proposed to meet these

requirements.

Provisions for rotor lightning strike protection were proposed by both NASA

and the contractor. A laminated aluminum screen system, essentially the same

as utilized for MOD-OA blades, was NASA's final choice. Externally attached

aluminum strike diverter straps and a laminated aluminized fiberglasm cloth

had also been proposed and evaluated for material and installation cost.

Although it was felt by both GBI and NASA that all three systems would be

technically feasible, the chosen system had been previously qualified (ref.

6) and represented therefore, minimal overall risk. Coverage of the rotor

was proposed strictly for the blade elements. Ground straps would be

installed just outboard of the splice joint, as shown in Figure 18. An

evaluation of conductive epoxies would be necessary to assure best

electrical connection from the screen to the ground straps and from other

conductive installations (such as pressure taps) to the screen as shown in

Figure 13.

5.0 FABRICATION CONCEPT and DESIGN DETAILS

The fabrication concept serves as one of the practical advancements of the

proposed design relative to previous efforts (ref. 7). Because of the

acceptance by NASA of chordwise centers of gravity which are further aft

from the airfoil leading edge, relative to previous programs, manufacturing

simplifications occur. These simplifications also permit more efficient

placement of structural material to counter critical flatwise design loads.

Many of the descriptions and design details furnished in this area of the

report pertain to and assume a rotor produced from prototype tooling.

However, some of the illustrated general manufacturing processes assume

production operations with the availability of production level tooling.

9



Someof the assumptions madefor the production version of this rotor
include:

a) Use of 50 inch wide, 96 inch long, 0.i inch thick rotary peeled
Douglas Fir Veneers (Prototype is baselined on 25 inch wide veneers
of sametype)

b) Use of WESTSYSTEM(R) Epoxy

c) Use of ultrasonically graded veneer (GBI specified Blade Grade 2
in the outer rotor and Blade Grade 1 in the hub; see Appendix C)

d) Use of spanwise butt joints in outer rotor laminate with
controlled 3 inch stagger as shownin Figure 19.

The instrumentation enclosures will be installed in the prototype prior to

the bonding of blade halves.

5.1 Molds and Tooling

The general molding concept has not changed dramatically from earlier

efforts. As before, female half shell molds using vacuum bag lay up were

proposed. The machining of the laminated blade halves after lay up is

accomplished with a circular saw which is guided by the mold so that cut

angle and elevation are properly controlled.

For the prototype rotor, four molds were to be built. For fabrication of the

outer rotor, female high pressure and low pressure molds would be formed

from a full scale male pattern. In turn, all four outer rotor halves would

be manufactured from these tools. For fabrication of the constant section

inner rotor (hub), two female molds would be fabricated, without the need

for a male pattern. This is because of the relative simplicity of the outer

surfaces and the lower exterior contour tolerance requirements of the hub.

Other tooling necessary for fabrication of the prototype includes fixtures

for drilling and bonding stud hole bushings in the hub laminate, and

miscellaneous machining jigs for manufacturing holes in both hub surfaces as

well as access to instrumentation enclosures. Finally, some simple clamping

devices are necessary for bonding the assembled outer rotor parts (blades)

to the hub.

For early units, machining of the finger joints, which will allow for a

structural assembly of the three rotor parts, is assumed to take place at a

facility which supported a similar machining requirement under the MOD-5A

program.

i0



5.2 Outer Rotor (Blades)

Fabrication of the outer rotor or blades consists of the following principal
operations.

Materials Preparation- Graded veneers are conditioned to a stable

moisture content and trimmed to dimensions required for molding.
Fiberglass cloth is checked for quality of weave and trimmed to

dimensions required for molding. Vacuum bagging materials are
prepared for molding.

Half shell molding- The mold surface is coated with epoxy gelcoat.
Required layers of fiberglass cloth and veneer are epoxy coated and

placed in mold. Entire layup is vacuum bag cured at room

temperature. This is shown in Figures 20, 21 and 22.

Half shell trimming- Circular saws are used to accurately trim the
leading and trailing edges of each blade half. This is shown in
Figure 23.

Half shell bonding- The shear web is bonded into position prior to

bonding the trimmed blade halves together. This is shown in Figures
24 and 25.

Preliminary finishing- Cleanup of excess adhesive at bonded joints
takes place.

Finger Joint Machining- Each blade is accurately positioned with
respect to the cutting machinery. The ends are machined flush and

then fingers are carefully machined in vertical passes into the

blade end. This is shown in Figures 26 and 27.

Detail of the outer rotor structure is given in Figure 28.

5.3 Inner Rotor (Composite Hub)

Fabrication of the inner rotor, or hub, consists of the following principal
operations.

Materials Preparation- Graded veneers are conditioned to a stable

moisture content and trimmed to dimensions required for molding.
Fiberglass cloth is checked for quality of weave and trimmed to

dimensions required for molding. Vacuum bagging materials are

prepared for molding.

Half Shell Molding- The mold surface is coated with epoxy gelcoat.

Required layers of fiberglass cloth and veneer are epoxy coated and

placed in mold. Entire layup is vacuum bag cured at room

ii



temperature. This sequence (minus gelcoat application) is repeated

once in the low pressure shell to manufacture the thicker structural

buildup. This is shown in Figures 29, 30, 31 and 32.

Load Take-Off Hardware Installation- Following accurate trimming of

the half shell edges, holes for load take-off studs are machined

into the compression side half shell. Then, a special jig is used to

accurately position and hold the load take-off studs during adhesive

bonding. This is shown in Figures 33 and 34.

Half Shell Bonding- Teeter hardware is installed and protected from

adhesive as the hub halves are bonded. This is shown in Figure 35.

Preliminary Shell Machining- A hole is machined to provide for low

speed shaft clearance. This is shown in Figure 36.

Preliminary Finishing- Cleanup of excess adhesive at bonded joints

takes place.

F_nger Joint Machining- The hub is accurately positioned with

respect to the cutting machinery. Each end is machined flush and

then fingers are carefully machined in vertical passes into the hub

ends.

Details of the hub structure and finger joint are given in Figures 37

through 43. The figures illustrate the location of structural laminate and

hole reinforcements, as well as finger joint machining and joining details

and tolerances. Note that Figure 42 does not illustrate an inner rotor

element but is included in this section for completeness.

5.4 Rotor Assembly

Because the rotor is composed of three basic structural elements: two blades

and a hub, a plan to assemble the three pieces was developed. This consists

of bonding each blade to the hub in separate operations.

During each operation, care must be taken to maintain critical alignments

while the rotor components are positioned with the low pressure surfaces

facing up. The first of these alignments is the maintenance of linearity of

a reference line scribed on the common flatwise surface of all three pieces

with respect to a vertical plane. This maintains proper aerodynamic

relationships as well as keeps the center of gravity as close as possible to

the chordwise centerline of the hub, minimizing tower excitations. The other

alignment is the maintenance of linearity of a common leading/trailing edge

line with respect to a horizontal plane. Due to the lack of twist, this

becomes easier to accomplish and serves to maintain close tip alignment of

the two blades of the rotor with respect to the rotor disk. Figure 44

illustrates this configuration.
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While maintaining these alignments, each blade is brought into contact with

the hub during separate splice joint bonding operations. Clamping force is

then applied and maintained via balance-loaded external polyester cables

which compress the joint and keep the load relatively constant during cure.

5.5 Manufacturing Plan

A detailed Manufacturing Plan was developed by GBI and serves to identify
all manufacturing operations necessary for the fabrication of a prototype

rotor as designed. It is included in Appendix F for reference. Included in

the Manufacturing Plan are key quality control and quality assurance

provisions.

6.0 DESIGN SUPPORT TESTS

Several design support tests were specified within the original scope of the

project. General test plans were to be designed by GBI and the necessary

test articles were to be fabricated by GBI. These are described within this
section.

6.1 Qualification of Splice Joint

The structural joint which is utilized to bond the outer rotor pieces to the

inner rotor is perhaps the most innovative structural feature of this rotor

design. The specific joint type is a set of form fitting fingers as selected

for the baseline MOD-5A splice joints (reference Figures 41, 42, and 43).

Because of the NASA specified commonality which is to exist between the

finger joint geometry of these two projects, a finger length of 11.5 inches

(with a slope of I0:i) and a pitch of approximately 2.75 inches was used.

A cantilevered test article, as shown in Figures 45 and 46, was designed by

GBI to subject a set of these machined and bonded finger joints to

alternating bending stresses. Actuator loading at the extreme tip end of the

20 foot long test article would generate the desired outer fiber stresses.

The actuator loads are reacted at the root end of the article by advanced

load take-off studs (Design 4) which are similar to previous MOD-OA blade

concepts. The studs are epoxy bonded to laminate blocking at the root end

and attached to a rigid strongback. The test section of the test article is

a constant section wood/epoxy laminate box-beam containing the bonded set of

finger joints. The fundamental parameters guiding the design of the test
article were maximum actuator load and deflection, estimated extreme fiber

stress in the test area to yield a high cycle fatigue failure, and load
take-off stud capability.

The structural pieces were fabricated at GBI and supported 'prove out' of

the MOD-5A finger cutting machinery. The machined structural pieces were
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returned to GBI for final assembly. Shipment was made to NASA-LeRC after

final bonding of the joint and load take-off studs.

Installation of strain gages was performed by NASA-LeRC. The test article

was fatigue tested at Ft. Eustis, Virginia under a separate NASA-LeRC
contract.

6.2 Composite Hub

The final hub design featured wood/epoxy laminate structure augmented with

E-glass fibers placed between each veneer layer at an orientation of +/-45

degrees relative to wood fiber. The principal purpose in augmenting the

wood/epoxy laminate with glass fiber was to reduce the significant stress

concentrating effects of the large holes existing on both the upwind and

downwind faces of the hub. Both faces of the prototype rotor hub were

required to have an access hole so that the prototype rotor could be

operated both upwind and downwind of the tower. Furthermore, strength

augmentation is desirable due to the significant number of smaller

disruptions of the laminate in the thickened, low pressure side laminate.

These disruptions are created by the large number of load take-off sleeves

bonded in this region. For flexibility in the prototype rotor test program,

many additional bolt locations were provided so that the rotor could be

operated over a range of delta-three angles. To create additional positive

margin in the prototype rotor, the glass fiber augmentation was proposed by

GBI and accepted by NASA. Furthermore, the high pressure or tension side

hole was designed with both an oblong shape and with a carbon fiber/epoxy

liner to reduce the classic stress concentrating effects of such a

structural disruption. It is likely however, that a production version of

such a rotor would not require a large hole in each surface. It is also

unlikely that the numerous bonded sleeves for load take-off would be present

in a production rotor version.

NASA elected to waive any qualification testing requirements relative to the

hub design because of adequate positive margins in the area of the hub and

low assessed risk of prototype failure.

7.0 STRUCTURAL ANALYSIS

The structural analysis of the rotor consists principally of an assessment

of flatwise and edgewise section physical properties of the designed

structure. These properties were then evaluated against different NASA

furnished final design load cases to determine design margin levels. A

flatwise margins summary is provided in Table IV. It can be seen from Table

IV that the rotor's smallest positive (flatwise) margin is calculated as 3

percent for the extreme wind case at rotor centerline (Station 0 inches).

Edgewise margins, as expected, were large, and will be discussed later.

Where necessary, the design was modified to obtain positive flatwise
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margins. A preliminary evaluation of margins against combined loads was also
conducted at a limited numberof rotor locations to determine magnitudes of
margin change.

Design allowables were also developed, based on materials test data, for
specific loading conditions. The allowables analysis is presented in
Appendix C. Data from references 8, 9, and i0 were utilized in the
development of allowables. Summariesof the structural analysis of the
different rotor components for different loading conditions are presented in
this section.

7.1 Outer Rotor

7.1.i Normal Operating Loads

A normal operating load allowable was used to determine section capabilities
against defined flatwise and edgewise loads separately. Positive flatwise
margins were calculated for the entire rotor and are summarizedin Table V
and in Figure 47. A minimumpositive flatwise margin of 12 percent is
calculated at Station 276.

An analysis of margins against combined flatwise and edgewise loads was also
conducted for the normal operating load case. This analysis was conducted at
the rotor centerline (Station 0), at the splice joint centerline (Station
43), and at the rotor 'breakpoint' (Station 156). The 'breakpoint' is the
location of maximumchord as shownin Figure 4. Extreme fiber minimumand
maximum tensile stresses were evaluated around the high pressure perimeter

at the rotor centerline. Extreme fiber minimum and maximum compressive

stresses were evaluated around the low pressure forward perimeter of the two

outboard stations (Stations 43 and 156) by adding peak flatwise and peak

edgewise stresses. These stresses change linearly with distance from the

flatwise and edgewise neutral axes. Flatwise extreme fiber stresses were

adjusted, at rotor centerline, for the effects of the high pressure surface

(tension surface), low speed shaft cutout hole. Allowables for the highest

stressed surface fiber were utilized in accordance with the established

Goodman diagram (Appendix C, Figure 66) for each perimeter location

evaluated.

As shown in Tables Vl, VII, and VIII, the combined loads analysis does show

reductions from the positive margins calculated for the flatwise design

operating case. The calculated combined minimum positive margins range from

14 to 149 percent.

7.1.2 Maximum Operating Loads

A maximum operating load allowable was used to determine inner and outer

rotor section capabilities against defined flatwise and edgewise loads.

Positive flatwise margins are seen throughout the rotor and are summarized
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in Table IX and in Figure 48. A minimumpositive flatwise margin of 24
percent is calculated at Station 324.

7.1.3 Hurricane Loads

A static load allowable was used to determine inner and outer rotor section
capabilities against a fixed aerodynamic load of 70.1 lb/sq.ft. This value
is equivalent to a wind speed of 125 mphwith an aerodynamic drag
coefficient of 1.25 and with a 1.4 multiplier for gusts. Positive margins
are seen throughout the rotor and are summarized in Table X and in Figure
49. A minimumpositive flatwise margin of 3 percent is calculated at Station
O.

7.1.4 Buckling and Edgewise Loads

The designed structure was also checked for positive margins against
flatwise buckling loads and was spot checked at three locations for expected
high margins against edgewise bending loads. The results are presented in
Tables XI and XII. A minimumpositive flatwise buckling margin of 102
percent is calculated at Station 324; a minimumpositive edgewise moment
capability of 569 percent is calculated at Station 156.

7.2 Splice Joint

The rotor section at which the splice joint is centered (Station 43) was
given a flatwise bending capability knockdownof 2 percent following an
assessment of available finger joint design data generated within the MOD-SA
program. The 2 percent knockdowndoes not imply a 98 percent joint
efficiency. Rather, it reflects the fact that a much larger total scale
effect knockdownmust be taken for the overall rotor than just for the
limited volume finger joint area. Also, it accounts for the fact that butt
joints, which occur in the bulk outer blade laminate, have been
systematically excluded from the finger joint area. This 2 percent knockdown
was applied against the Station 43 section capabilities for normal and
maximumoperating conditions, as well as hurricane gust conditions. Positive
margins are still present.

7.3 Inner Rotor

Hub sections were evaluated with allowances for low speed shaft cutouts and
with an additional stress concentration factor of 2.3, assumedfor the
critical tension side (elongated) hole, due to classical analysis. Figure 50
shows the critical hub section element evaluated at rotor centerline
(Station O) which is one half of the high pressure shell. Due to symmetry,
the other half of the high pressure shell benefits from the sameanalysis
relative to flatwise loads. The assumeddistribution of outer fiber stress,
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due to flatwise loads, over this samesection is plotted in Figure 51. It is
felt that the analytical treatment of the holes was conservative because the
+/- 45 degree (relative to woodgrain) glass fiber augmentation of the hub
laminate would reduce shear lag and stress concentrations below classical
levels. Benefits of E-glass fiber augmenting of the wood/epoxy laminate are
not accounted for in the parallel to grain allowable values, thereby
providing additional conservatism. The evaluation of stress levels and
material allowables in the hub near the low speed shaft cutouts is presented
in further detail in Appendix C.

Teeter stop loads, as presented by NASA,were evaluated against the design
capability of the load take-off provisions for both hydraulic and rigid
structure teeter stops, and positive margins are indicated against
conservatively estimated load take-off stud capability.

Paired 24 inch long studs are proposed with a momentarm approximately 29
inches from the teeter axis. Assumingsimple single-acting hydraulic teeter
dampers, each stud would be required to perform for 20 million cycles at a
peak tensile load of 40,000 pounds. Recent stud fatigue data (generated
through the program described in Section i0.I) suggests such performance can
be easily attained.

7.4 ,General Rotor Properties

General rotor properties have been calculated by determining section
properties (weight per spanwise foot and flatwise and edgewise stiffness) at
twentyone spanwise locations. The computedweight and stiffness properties
have been combined with specified loads to calculate rotor deflections and
resonant frequencies through use of cantilevered beamrelationships. The
ability of GBI to accurately computeand apply section properties to predict
overall rotor (or blade) deflection and frequency properties has been
demonstrated in previous design and fabrication efforts. General rotor
properties are presented in Tables XIII, XIV, and XV and in Figures 52, 53,
and 54.

8.0 COSTANALYSIS

A Final Design Cost Analysis wasconducted. The analysis focused on a
production version of the Final Design Prototype at different production
rates. Different capital equipment assumptions were applied to the different
production rate cases. Also, it was assumedthat a production variation of
the prototype design would be lighter by 530 pounds. This weight savings
would be realized mostly through hub design simplifications including fewer
load takeoff provisions and less fiberglass augmentation. The cost analysis
is detailed in this section.
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8.1 Capital Costs

Capital cost assumptions were madefor the three distinct production rates
of 2, i0, and 120 rotors per year. The costing basis for 2 rotors per year
production assumeduse of existing prototype equipment. At this production
rate, continued dependenceon subcontracting of finger joint machining has
been assumed.

At a production rate of I0 rotors per year, continued utilization of the
prototype tooling, with slight refinements, is assumed. Depreciation costs
over a ten year life is, however included in this case. In addition, the
capitalization of a finger joint cutting machine is assumedat this
production volume.

While the lower production rates assumeusage of existing GBI plant
facilities, the final case, at a rate of 120 Rotors per year, includes
capita] costs for a dedicated production facility with a 20 year life. Also
present in this case are capital costs for higher production tooling with a
I0 year life and production molds with a 5 year life.

A summaryof plant capital costs for all three cases is provided in Table
XVI.

8.2 Materials and Labor Breakdown

The breakdown of production rotor materials into basic quantities was
accomplished and is summarizedin Table XVII. Note that the production
weight of 3991 pounds is less than the prototype weight of 4522 pounds. This
is principally due to reductions in hub reinforcing fiberglass and epoxy,
hub hardware, and the instrumentation package. These reductions are possible
due to an elimination of the need for variable delta-three angle capability,
instrumentation, and flexibility for upwind or downwindconfiguring.

A similar breakdownof production rotor direct labor hours at a 120
rotors/year production rate was developed and is summarizedin Table XVIII.
Certain labor efficiency improvement factors have been utilized in
translating the direct labor componentof production rotor costs from the
lowest to the highest production volume case.

Labor costs for the prototype rotor will be significantly higher than for
the 2 rotor/year case. This is not only because of learning curve factors,
but also because the prototype would have multiple configuration capability
and would be fully instrumented.

Total cost figures exclude the cost of teeter hardware which was not
evaluated under this contract. The cost of a wood composite rotor of the
type designed in this effort should be lower, not only than that of rotors
employing other methodsof manufacture and material, but also than that of
rotors composedof a metallic hub and wood/composite blades such as in the
case of MOD-0A.
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8.3 Cost Summary

A summary of rotor costs for all three evaluated rotor production per year

cases is presented in Table XIX. These costs range from $25,452 to $38,783

for 120 rotors per year to 2 rotors per year respectively. For the 120

rotors per year production case, the material component of final unit cost

is 26.9 percent while the labor and overhead component is 47.3 percent. A

similar relationship was shown in a previous effort (re£. Ii). Cost

reduction efforts would therefore be best served by focusing on reducing

direct labor hours per blade by investing in plant and capital equipment
sufficient to realize substantial labor reductions.

Cost data was based on several years of commercial blade fabrication during
which time GBI built more than 775 blades (or 200,000 pounds of such

structures). Therefore, the figures can be viewed as considerably more

realistic than those generated in previous efforts.

8.4 Cost Reduction and Cost Control

In the process of estimating the 2nd, lOth, and lO0th unit rotor costs

(Table XIX), an effort was made to assume the greatest possible labor force

learning and efficiency improvement factors. The result of such an

improvement is a reduction in both the total and proportionate costs of

labor per rotor when going from low volume production rates to producing a

rotor every other work day.

Implementation of such a program would involve two basic elements. First,

all appropriate tooling and equipment was identified to allow production to

move from inefficient, prototype dedicated hardware to more streamlined

production oriented systems. Additional capital costs were assumed for

further production hardware development in support of improvements which,

although not identified, should be anticipated and supported.

Secondly, it is felt that a dynamic philosophy of constant task reassessment

is necessary to further reduce total labor hours per rotor. This can happen

both by better utilization and refinement of existing hardware and by

development of new hardware.

Material cost improvements result from an aggressive competitive purchase

program, judicious inventory control, and an ongoing process improvement

program.

Manufacturing costs are collected and reported in a computer equipped

accounting system so that management, shop supervision, and process

improvement engineers have an up-to-date cost history available in the

ongoing effort to reduce costs.
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9.0 MISCELLANEOUS HARDWARE

Additional hardware which was designed under this contract included special

clamping fixtures and sleeve installation hardware for manufacture of the

prototype rotor. Furthermore, necessary hardware for handling and shipment

of both the partially completed and fully assembled rotor were designed.

Descriptions of this hardware is provided in this section.

9.1 Prototype Tooling and Fixtures

At an early stage in the manufacture of the composite hub, holes are

machined and the large number of sleeves needed for the load take-off are

bonded into place. Principally the hardware consists of a plate which has

been machined in accordance with the selected fastener pattern. Slip

bushings are inserted into the plate holes to support the hand performed

drilling operation. Finally, slip pins are later inserted into the plate

holes to hold and align the sleeves prior to and during the bonding

operation as shown in Figure 55. A second flat plate is provided to retain

the planar relationship of these slip pins by sandwiching the slip pin

shoulders between the two plates. Four steel hangers attach to the main

plate and serve to position the plate properly with respect to the machined

hub laminate edges. The hardware designed for accomplishing this operation

on the prototype is shown in Figure 56.

The hardware illustrated in Figure 57 serves to provide the necessary tip

end attachment and adjustment of external cables needed during the splice

joint bonding operation described in Section 5.4.

9.2 Handling and Shipping Provisions

Genera] shipping configurations were developed for preliminary rotor

shipment to the finger joint machining subcontractor. Form fitting shipping

cradles were designed for containing the rotor elements during preliminary

shipment and for containing the fully assembled rotor during final shipment.

Provisions are shown in Figure 58 for final rotor shipment.

A modified MOD-OA spreader bar would be used for handling the fully

assembled rotor. For the prototype rotor, it is assumed that this hardware

would be furnished by NASA-LeRC. Use of the bar is shown in Figure 59.
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I0.0 SECONDARY TASKS

The contractual effort included tasks unrelated to the rotor design but

supporting the development of advanced wood composite rotor technology. The
work on these tasks is summarized in this section•

lO.l Load Take-Off Stud Test Program

The program included the design of advanced load take-off stud concepts. A

set of designs were proposed which would serve to identify the contribution

of specific design variables to static and fatigue performance. Also the

designs were developed to elevate the overall level of stud performance
relative to previous evaluations (ref. 12). GBI was also tasked under this

contract with the fabrication of up to 92 test samples containing the NASA

selected studs from the proposed designs• The test program is being
conducted by another NASA-LeRC contractor.

From the ten designs proposed, NASA-LeRC made a final selection of eight
stud designs to be manufactured. This selection included five of the

proposed designs, with NASA adding a full-scale MOD-OA, a 3/4 scale MOD-OA

design and a non-tip drilled derivative of one of the first five designs.
Figures 60 and 61 illustrate the eight designs selected for evaluation.

To introduce simulated blade loads into the test studs, a laminated

wood/epoxy composite block was required for bonding of studs. Two test block

designs were specified by NASA-LeRC. These designs are shown in Figure 62.

The test studs were bonded into the test blocks by GBI.

The thrust of the test program has been on an initial evaluation of all

eight designs with larger sample populations finally designated for Designs

4 and 5. Because of the thin wall thicknesses needed in the tip region for

Designs 4 and 5, a number of machining procedure iterations as well as

slight respecification of the designs were necessary to improve delivery

time and reduce the cost of the test studs. Initial performance data

provided by NASA-LeRC indicates that both Design 4 and 5 studs are very
promising for significant gains in static and fatigue performance, as

compared to the MOD-0A blade studs (ref. 12).

10.2 Wood/Epoxy Laminate Test Program

GBI was tasked under the contract to propose to NASA-LeRC a test program for
the evaluation of wood/epoxy laminate and to fabricate the basic laminate

from which fatigue sampleswould be built by NASA or another contractor•

Following review of the proposal, NASA-LeRC indicated what laminate types
would be required. The fabrication and shipment of these laminate billets

has been completed• The testing of these fatigue samples has been conducted
by another NASA-LeRC contractor.
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10.3 Advanced Wood Composite Technology Tests

GBI was tasked to evaluate several concepts for advancements in wood/epoxy

laminate technology. The first of these concepts was developed in support of

the load take-off stud test program. This involved an evaluation of a scheme

where the basic laminate is augmented with unidirectional graphite fabric to

increase the elastic modulus. Increasing the laminate elastic modulus

reduces the modulus mismatch between the laminate and steel load take-off

studs, thereby reducing the shear stress levels in the epoxy utilized to

transfer load from one material to the other. These reduced stress levels

are expected to be associated with improved levels of fatigue performance

for load take-off studs. Ultimately the concept was shown to be sound. Some

performance degradation was noted at tests conducted near 120 degrees

Fahrenheit. The summary of this evaluation is presented in Appendix D.

The second program was an evaluation of wood/epoxy laminates, with scarf

jointed plies, under compressive static and fatigue loads. The effects of

scarf joint slopes on laminate performance, particularly in fatigue, had not

previously been investigated. Also evaluated was the effect on laminate

performance of non-optimum scarf joints, namely overlaps or gaps, formed

during a manufacturing operation. This test program is summarized in

Appendix E.

ii.0 DISCUSSION

A comprehensive review of the Final Rotor Design and secondary tasks

progress was conducted by NASA-LeRC personnel. This section provides a

summary of the work performed under this contract.

II.I Primary Task

The design of an Advanced Wood Composite Rotor has been completed and

undergone review, by NASA's Lewis Research Center. The design was approved

by NASA on the basis of structural integrity and estimated aerodynamic

performance. The manufacturing plan was considered to be practical and
cost-effective.

The lowest positive design margin was calculated at rotor centerline for the

extreme wind condition (125 mph wind plus gusts). This calculation was based

on conservative laminate strength and hole stress concentration assumptions.

For a production version of the rotor, simplifications of the hub design

should increase the calculated margins.

The design is a 90 foot diameter, 400 kW (max. rated power) rotor, which

weighs 3991 pounds in production configuration (the prototype weight was

calculated to be 4522 pounds). The rotor could be field assembled, however

one piece shipment has been assumed.
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Cost of production units, at a rate of 120 rotors per year, has been

estimated to be $25,452 (1983 dollars). This figure excludes teeter

hardware. A cost per unit weight analysis shows that such a rotor, at $6.38

per pound, is seventeen percent lower in per pound cost than adjusted MOD-OA
blade data (refs. 7 and Ii). The economics should become even more

attractive when comparisons on a complete rotor basis would be made.

Miscellaneous design features such as lightning protection, instrumentation

and ice detection provisions were all accepted by NASA at the time of the

FinalDesign Review. The lightning protection and ice detection provisions

are proven concepts used in previous programs. Shipping and handling

provisions were reviewed and determined by NASA to be practical and in

accordance with previously accepted practice.

Fabrication of the prototype pattern, from which the prototype tooling would

be made, commenced following NASA approval of rotor contour drawings. Work

on the tooling was terminated, following NASA direction to delete

fabrication of the rotor from the program.

11.2 Secondary Tasks

The results of the secondary tasks are summarized in this section.

I. Advanced stud designs were finalized and samples were produced

for testing at a NASA contracted test facility.

2. A wood composite test program was reviewed by NASA and elements

of the program were selected for testing at a NASA contracted test

facility. Wood/Epoxy laminate was produced by GBI in support of this

activity.

3. Test Programs were designed and conducted in support of two

advanced composite concepts. One program was a scheme for augmenting

wood composite with unidirectional graphite. The other involved

compression evaluation of scarf jointed laminate plies. Both

concepts were shown to offer performance benefits, although the

modest amounts of data generated may not sufficiently support the

development of specific design allowables.

4. A test article for fatigue evaluation of full-scale finger joints
was designed and fabricated. The article was tested at a U.S.

Government facility.
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12.O CONCLUDINGREMARKS

The relative simplicity of the rotor structural design and stall-limiting
schemeoffers potential savings in capital costs as well as machine
operating and maintenance costs. These savings are expected to be offset to
somedegree by lower annual energy capture. Actual data on the resulting
cost of energy would significantly influence future commercial rotor
designs.

The opportunity to enhance the properties of basic wood/epoxy laminate via

high strength fiber augmentation or scarf jointed construction was

demonstrated in the secondary tasks of this contract. Further testing would

serve to refine such advancements and allow for the development of

statistically credible design data.
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TABLE I.- FINAL PROTOTYPE ROTOR DESIGN SPECIFICATIONS

Rated Power(max. )_kW

Rotor Diameter, feet

Number of Blades

Blade Twist, Deg

Rotor Speed, RPM

Rotor Location_

Rotor Tilt, DeE

Rotor Coning, Deg

Physical

Aerodynamic

Rotor Teetering, Deg

Hub Delta-3 Angle, Deg_

Tip Airfoil Type

Type of Power Control

Normal Shutdown Mode

Emergency Shutdown Mode

Starting Mode

Design Windspeed, mph

Cutout Windspeed, mph

4OO

9O

2

0
3.5

5_
6O

Upwind or Downwind

Less than 5

0

÷-67.5 in 22.5 increments

NACA 64(3) 6XX

Stall Limited

Yaw Control

Mechanical Brake

MotorinE

25

5O

m with respect to tower

_ rotation of teeter axis with respect to rotor spanwise

centerline

TABLE II. - 90-FOOT DIAMETER WOOD ROTOR DESIGN MOMENTS*

STATION

(inches)

0
45
100
155
210
265
320
375
430
485
540

FLATWISE MOMENT, ib-ft

STEADY

-]42,400
-123,200
-I00,400
-79,000
-59,000
-41,000
-25,200
-13,200
-5,000

-600
0

CYCLIC

24,400
21,800
18,400
15,400
12,400
9,400
6,400
3,800
1,900

500
0

CHORDWISE MOMENT, ib-ft

STEADY CYCLIC

-28,600
-26,700
-19,800
-16,300
-13,000
-9,500
-6,300
-3,800
-1,900

-700
0

35,200
26,300
19,100
13,100
8,700
5,500
3,200
1,600

700
150
0

*NASA specified at 4 x 108 cycles.
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IABI,E 111 - RI,ADE GEOHEIRIC PROPERTIES

Blade Twist: O*

OF POOR QU_LiiY

STATION CI(ORD

(inches) (inches)

- 43 51.5

43 57.5

60 58.41

84 q9.85

132 63.12

156 63.7

180 62.2

228 57 11

276 52.02

324 66.92

372 :,1.83

420 3(). 13

668 31.64

516 26.55

540 24.0

TIIICKNESS

(inches)

21.88

21.88

21.27

20.42

18.72

17.87

17.02

15.33

13.65

1t.96

10.28

8.59

6.91

5.22

h.lR

THICKNESS/CHORD

,381

.38t

• 364

.341

.297

.281

.274

•268

• 262

.255

.246

• 234

.218

. 197

• 182

SIIELI, TItICKNESS

(inches)

2.7

2.7

2.38 - 2.68*

1.18 - 1.28

1.08 - 1.18

1.08

.98 - 1.08

.88 - .98

.88

.68 - .78

.58 - .68

• 58

• 58

.5R

.58

SIIEAR NEB I._CATIONS

L.E. to Fed FaCe

(inches)

24.69

24.00

23.13

21.38

19.62

17.88

16,13

14.38

12.63

10.88

10.00

*Double numbers indicate a veneer tetluinates at station.

TABLE IV. - FLAT_ISE _LARGINS SUI@4ARY

STATION

(inches)

0

3

6

9

17

20

35

43*

43*

6O

84

132

156

180

228

276

324

322

420

468

516

54O

EXTREHE

HIND

CASE

3

7

15

31

156

159

179

184

177

138

49

41

38

39

43

52

61

83

167

410

2661

MARGINS, Percent

DESIGN

OPERATING

CASE

64

70

82

107

298

302

216

218

197

171

49

32

22

19

14

12

15

32

84

211

1130

.m

I._XIHUH

OPERATING

CASE

106

II0

126

156

392

386

290

292

266

232

83

58

47

42

33

28

24

27

62

155

96O

MINIMUHMARGIN

PERCENT

3

7

15

31

156

159

179

184

177

138

49

32

22

19

14

12

15

27

62

155

960

CASE

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Extreme Wind

Design Oper.

Design Oper.

Design Oper.

Design Oper.

Design Oper.

Deaign Oper.

Max Oper.

Max Oper.

Max Oper.

Hax Oper.
All

tTuo dl£ferent calculations were made at the splice Joint centerllne (Station 43). The higher merglns as indicated

for the inner rotor are due to the use of higher grade unjointed laminate; the lower outer rotor margins are due

to the use of Jointed lower grade veneer laminates.
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OF POOR QUALITY

TABLE V. - DESIGN OPERATING CASE, FLkIMISE Sgtg4ARY

175 kW OUTPUT, 25 HPH WIND SPEEb

STATION

(inches)

0

3

6

9

17

20

35

43.s

43**

60

84

132

156

180

228

276

324

372

420

468

516

540

r RATIO

MIN STRESS

_x STRESS
(NASASFECXFf_)

.700

.700

• 700

• 700

,700

.700

•700

.700

• 700

.700

.696

.684

.676

.869

.649

.622

.592

.554

.474

.25

-. 24*

-. 50*

ALLOWABLE

DESIGN OPERATING LOAD

NASA SPECIFIED

(psl) (lnch-lbs x 106)

FLATNISE CAPABILITY

AGAINST ALLOWABLE

(lnch-lbs x 106)

3. 286

3. 359

3.582

4.021

7.559

7.559

5.6;9

5.564

2831

2831

2831

2831

2831

2831

2831

2774

2372

2420

2415

2405

2395

2305

2355

2320

2280

2225

2135

1845

1490

131_

2.000

1.980

1,965

1.960

1.900

1.880

1.795

1.750

1.750

1.650

1.520

1.265

1.130

1.005

.770

,558

.366

.20b

.100

0.034

0,004

0

5.194

4.467

2.270

1.640

1.382

1.193

.826

.626

.422

.272

.184

,106

,049

.029

FLATMISE

LOAD HARGIN

(percent)

64

70

82

107

298

302

216

218

197

171

69

32

22

19

14

12

15

32

84

211

1130

o0

*extrapolated values

**sEe effiplenatton In Table IV.

TABLE Vl. - COHBINED LOADS STRESS ANALYSES

(175 kW Outpost, 25 HPR Vi.d Speed, 4xlO 8 Cycles)

SUig'_RY FOR ROTOR CENTERLINE (STATION O)

(High Pressure Surface)

EXTREtI8 FIBER LOCATION

DISTANCE FRON

LEADINGEDGE

(inches)

0

1

2

3

4

5

7

9

11

13

15

17

19

DISTANCE FROM

CHORDLINE

(inches)

O

2.46

4.63

6.23

7.64

8.35

9.63

10•37

10.70

10.78

10.78

10.78

10.78

EXTRI_IE FIBER

FLA'I_ISE STRESS

COHPONENT*

Hax Htn

(pal) (psi)

114 80

325 228

511 358

649 654

752 527

830 581

940 658

1OO4 703

1032 722

1309 916

1719 1203

1984 1389

2389 1672

* Based on Stepvise Linear ApproxlImtlon of S=oothl

CO_INED EXTREHE

FIBER STRESS

Hax Min

(psi) (PSi)

341 103

5&& 250

722 379

852 474

947 567

1017 600

II12 675

1160 719

1172 736

1633 928

1827 1214

2077 1398

2666 1680

Varyln:

STRESS

RATIO

Hin.Stresa_
Max.Stress/

0.30

0.46

0.52

0.56

0.58

0.59

0.61

0.62

0.63

0.65

0.66

0.67

0.68

DESIGN

ALLOWABLE**

(Psi1

2258

2669

2562

2609

2644

2668

2703

2714

2738

2761

2704

2796

2808

DESIGN

HARGIN

562

354

255

206

179

162

143

134

134

93

52

35

14

Stress Field In Reglon of Low Speed Shaft Hole

s* These Values Have Received An Additional 17Z Upgrade From Goodman Curve Values By Assumtn 8 Use of Unjointed,

Blade Grade 1 Veneer, An Additional Upgrade From Adjusting Allowables In Accordance With Highly Stressed,

Small Sttmctural Volumes Was Not Implemented.

CALCULATION PAgAHETERS

Extreme Ed_ewlse Stress

FLATNISE NEUTRAL AXIS: 1.33 inches from chordllne toward low pressure surface Maximum: 222 psi

_}GEWISE NEUTRAL AXIS: 28.75 inches from leading edge Minimum: 23 psi

27



TABLE VII. - COMBINED LOADS STRESS ANALYSIS

(175 kW OUTPUT° 25 _H WIND SPEED, 4 x 10 8 CYCLES)

SUt_AR¥ FOR STATION: 43

EXTREME FIBER LOCATION

DISTANCE DISTANCE

FROM L.E. FROM CIIORDLINE

(inches) (inches)

0

I

2

3

4

5

7

9

II

13

15

21

27

28.75

0

2.46

_.6_

6.23

7.44

8.35

9.63

10.37

10.70

10.78

10.78

10.79

10.79

10.79

COMBINED STRESS

Max. Mtn.

(psi) (psi)

-173 - 17

-358 -151

-521 -268

-639 -354

-727 -419

-791 -468

-878 -536

-924 -575

-937 -592

-931 -595

-919 -594

-884 -591

-848 -588

-837 -586

STRESS RATIO

Mln. Stress
Max. Stress/

.I0

.41

.51

.55

.57

.59

.61

.62

.63

.63

.64

.66

.69

.70

DESIGN DESIGN

ALLOWABLE HARGIN*

(psi) (percent)

-1905 I001

-2181 509

-2256 333

-2287 258

-2304 217

-2317 193

-2328 165

-2333 153

-2337 169

-2340 ISl

-2343 155

-2353 166

-2364 179

-2368 183

* These Values Are Downgraded By 2Z From Ooodnmn Curve Values Because of Splice Joint Adjustments

CALCULATION PARAMETERS

EXTRE_ FLATWISE STRESS EXTREME EDGEWISE STRESS

Flatwise Neutral Axis: Chordline Max: -837 psi Max: -173 psi

Edgewise Neutral Axis: 28.75 in. from Leadlng Edge Min: -586 psi Min: - 17 psi

TABLE VllI. - COHBINED LOADS STRESS ANALYSES

(175 kW OUTPUT, 25 MPI{ WIND SPEED, 4 x 108 CYCI.ES)

SUGARY FOR STATION: 156

EXTRE_ FIBER LOCATION

DISTANCE DISTANCE

FROM L.E. FROM CNORDLINE

(inches) (inches)

0 0

l 3.17

2 4.36

4 5.84

7 7.26

13 8.59

19 8.96

25 8.73

31 8.14

37 7.27

43 6.03

49 4.53

55 2.80

58 1.90

COMBINED STRESS

Max. Min.

(psi) (psi)

- 253 - 25

- 938 - 493

-1189 - 668

-1495 - 885

-1780 -1092

-2018 -1284

-2048 -1333

-1946 -I294

-1765 -i202

-1523 -1068

-1200 - 880

- 821 - 653

- 392 - 391

- 257 - 168

STRESS RATIO,

(_)Min.Stress

.10

.52

.56

.59

.61

.63

.65

.66

.68

• 70

.73

.79

1.00

.65

DESIGN DESIGN

ALLOWABLE HARGIN*:

(psi) (percent)

668

146

96

58

33

18

16

23

36

58

102

199

560

1327

-1944

-2311

-2340

-2364

-2377

-2387

-2393

-2400

-2407

-2416

-2430

-2459

-2578

-2395

FlatutBe Neutral Axis: Chordline

Edgewise Neutral Axis: 29.32 in. from Leading Edge
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EXTREHE FLATWISE STRESS

Max: -1958 psi

Min: -1324 psi

EXTREME EDGEWISE STRESS

Max: -253 psi

Min: - 25 psi



OF POOR QUALITY
TABLE IX. - HAXIHOH OPERATING CASE

400 kN OOTPOT, 33 _RPlI WIND SPEED

STATION

(inches)

0

3

6

9

17

2O

35

&3 **

43 **

60

84

132

156

180

228

276

324

372

420

468

516

540

r RATIO

BIN STRESS

_x sTREss
.ASA SPEClPlED

.7OO

.2O0

.700

.200

.700

.700

.700

.7OO

.700

.700

.696

.684

.676

.669

.649

.622

.592

.554

,474

.250

-.240"

-.50 *

HAX OPERAT;NG LOAD

(Inch-tbs x 106)

4210

4210

4210

6210

4210

4210

4210

4126

3526

3598

3583

3561

3542

3518

3468

3406

3330

3240

3077

2700

2032

1775

2.398

2.378

2.358

2.338

2.285

2.265

2.165

2,112

2.112

2.000

1.843

1.536

1.388

1.243

0.970

0.720

0.499

0.312

0.164

0.0606

0.00633

0

FIATWISE CAPABILITY

AGAINST ALLONABLE

(lnch-lbs x 106)

4.887

4.996

5.327

5.979

11.241

11.241

8.445

8.276

7.721

6.641

3.368

2.428

2.044

1.760

1.289

0.919

0.612

0.396

0.266

0.155

0.067

0.040

FLATWISE

LOAD HARG1N

(percent)

IO4

II0

126

156

392

396

290

292

266

232

83

58

47

42

33

28

24

27

62

155

960

ao

*extrapolated va]ue8

**see explanation in Table IV.

TABLE X. EXIREHE NIN[) LOAD CASE

70.l#/ft z Airload

(50.1#/ft 2 x 1.4 Instantaneous Peak Dynamlcs Hultipller)

STATION

(inches)

0

3

6

9

17

2O

35

43*

43*

6O

84

132

156

180

228

276

324

322

420

468

516

54O

3612

3612

3612

3612

3612

3612

3612

3540

3160

3225

3225

3225

3225

3225

3225

3225

3225

3225

3225

3225

3225

3225

EX'I'REJ'IE NIND LOAD

(lnch-lbs x IO6)

CAPAS ILITY AGAINST

ALLOWABLE

(lnch-lhs x IO6)

3.060

3.018

2,978

2.937

2.831

2,790

2.600

2.500

2.500

2,271

2.031

1.558

1.349

1.159

0.8303

0.5657

0.3594

0.2058

0.0990

0.0335

0.00349

0

3.145

3.215

3.428

3.848

7.233

7.233

7.242

7.098

6.916

5.951

3.018

2.192

1.859

1.605

1.188

0.857

0.580

O,377

0. 264

0,171

0.096

0.064

YLATNI SE

LOAD HANG IN

(percent)

3

7

15

31

156

159

179

184

177

138

49

41

38

39

43

52

61

83

167

410

2661

co

*see explanation in Table IV.
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TARI,E XI. - VI.ATWISE BIICKLING PIARGINS

STATION

(Inches)

43

60

84

132

156

180

228

276

324

372

420

468

516

540

EXTRE_ WIRD

pEAK pst_
iN SHELL/

1142

1231

2170

2292

2341

2329

2255

2128

1999

1761

1208

633

117

0

DESIGN OPERATING

_EAK psI_
IN SHELL/

800

896

1617

1826

1958

2009

2071

2068

1975

1686

1158

594

121

0

MAX OPERATING

PEAK psi_IN SHELL/

965

1086

1961

2252

2405

2484

2609

2668

2693

2554

1899

IO58

192

O

BUCKLING

(psl)

12569

10999

5441

5447

5595

5595

5582

5516

5433

5394

6374

7759

I0519

L2049

FLATW I8E

MINIMUM

• MARGIN

(percent)

1000

794

L51

138

133

125

114

107

102

111

236

633

5379

_o

TABLE Xll. - EDGEWISE MOMENT LOAD MARGINS

STATION

(inches)

0

43

156

STRESS

RATIO

0.1

0.1

0.1

ALLOWABLE

(psi)

1989

1666

1700

PEAK EDGEWISE LOAD

(psi x 10 6)

.7656

.636

.352R

EDGEWISE CAPABILITY

AGAINST ALLONABLE

{inch-3bs x l0 6)

6.717

6.136

2.361

EDCENISE

LOAD MARGIN

(percent)

777

865

569

TABI.P XIlI. - INNER ROIOK PIIYSICAI, PROPERTIES

STAI'ION

(inches)

WEIGIIF/FT

( t bs)

0 128.7

1 13i .h

6 141.6

_) 173.O

17 18r_.h

211 186.6

35 122.5

_'3 122.5

CC I,OCAr [(_

(7. of dmrd)

5[}

50

511

50

50

5O

$o

50

EI)CEWI SE El

(Ihs-ln 2)

EDCIW I RE*

(TAI'AP, l I I PY

inlh-16_ x lO h)

FLATW ISE*

CAPAB I L 1TY

( iuch-lbs × IO 6)

274.O6g

:!76 . 202

216 .&SS

214/126

27S. I_R

275.3S_

213.5_5

213.555

&S. "_I0

/, '1 .q _vl

/,1.2(11

/aS. ,q ? I

',2 ./dl9

/,8 182

&8.IS2

15.2_',q

15. 1_g

15.52/,

I ',. 71)/_

15.72_

15.728

12. Iqg

I Z, lOB

I. II_5

1.215

3.r, 2R

I.B4R

7.211

7. 233

7.242

7.242

*Capabilities _'al(lllnted against S-minute dural i,,. Io:ldhl_ (eXtlem(, whld) 3612 pmi allowable

STATION _IC_T/YT

(inches) (lbB) [ (g of chord)

|

43 100.8 I 50.0

60 92.1 _ 49.5

84 52.3 I 48.5

132 49.4 | 47.2

156 47.2 ] 46.9

180 45.0 / 47.0

228 37.3 [ 47.3

276 30.9 | 47.2

324 25.1 | 47.0

372 19.6 | 47.4

420 16.0 [ 47.5

468 13.6 | 47.7

516 11.2 j 47.7

560 9.9 | 47.2
i

* Torsional stiffness

** Capabilities calculated

Ibs-in2xlO 9 ibs-ln2xlO 9 Ibs_in2xlD 9
CAPABILITY CAPABILITY

(In-lbs x 106) (In-lbs x tO 6)

10.54

9.000

4.804

3.129

2.470

2.055

1.414

.91888

.56863

.33308

.18615

.09719

.04128

.02318

211.90

197.19

108.40

103.56

97.908

89,720

61.267

41.295

26.741

15.775

9.6436

5.9625

3.3487

2.3586

47.89

39.86

19.86

13.28

10.74

8.933

5.960

3.808

2.317

1.309

.?239

.3790

.1661

.09069

against 5-minute duration

30

11.639 6.916

10.586 5.951

5.459 3.018

4.816 2.192

4.480 1.859

4,194 1.605

3.122 1.188

2,288 .857

1.619 .580

1.069 .377

.806 .264

.578 .17l

.388 .096

.299 .064

loading (extreme wind) 3225 psi allowable



TABLE XV. - MISCELLANEOUS ROTOR PROPERTIES

NATURAL FREQUENCIES (HERTZ)

With Centrifugal

Stiffening

Without Centrifugal

Stiffening

Flatwise 3.80 (4.15P) 3.64 (3.97P)

Edgewise 10.42 (II.37P) 10.36 (II.30P)

16.1 inches (70.1 ib/ft 2 wind loading)

Ib-in-sec 2

TIP DEFLECTION:

ROTATIONAL MOMENT OF INERTIA: 4.80 x 105

Hub Weight 1679.5 Ibs

Hub CG STA 0

Outer Blade Weight 1421 ibs

Outer Blade CG STA 174

WEIGHTS :

TOTAL ROTOR WEIGHT 4521.5 Ibs

TABLE XVl. - PLANT CAPITAL COSTS (mid 1983 KS)

North of Bay City Agrarian Plant Site

I.

II.

2 ROTOR/YEAR PRODUCTION (Assume Use of Prototype Equipment)

No Additional Equipment

10 ROTOR/YEAR PRODUCTION RATE (Assume Use of Prototype Equipment)

itioua_. _qpipment * 200
iv year llre)

TOTAL 200

Depreciation as straight llne at I0 units per year

III. 120 ROTOR/YEAR PRODUCTION RATE

Plant (20 year life) 1440

Tooling (I0 year life) 790

Molds (5 year llfe) 180

TOTAL 2410

Depreciation as straight line at 120 units per year

*Includes finger Joint cutter
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Figure 7. - Fixed Teeter Axis Hub Concept - Upwind

Configuration, Exploded:Schematlc
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Figure 8.- Variable Delta-Three Angle Hub Concept l Upwind

Configuration, Exploded Schematic
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Figure 47.--Design Operating Load Capability vs.

Blade Station 175 kW Output - 25 MPH Windspeed

O

Figure 48.--Maximum Operating Load Capability vs

Station 400 kW Output - 33 MPH Windspeed -

Variable PSI Allowable
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Figure 49.--Extreme Wind Load Capability vs. Blade Station
70.1#/Ft2 Airload (50.1#/Ft2xl.4 Instantaneous Peak

DynamicsMultiplier)
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Figure 52.-Weight vs. Blade Station

(Without Instrumentation)
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Figure 50.- Critical Hub Element (Section

View) at Rotor Centerline. (Note

that only one-half of High Pressure

Shell Is Shown)

Figure 51.- Calculated Distribution of Outer Fiber

Stress for Element Shown in Figure 50.
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Figure 53.--Flatwise E1 vs. Blade Station
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Figure 54.--Edgewise E1 vs. Blade Station r
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13.0 APPENDIX A - Teetered Hub Principal Stud Load Analysis

Assumptions:

I) 90 foot diameter rotor/4OOkW output

2) Gear box/generator efficiency of 0.85

3) Four inner row studs 11.5 inches from centerline, four middle row
studs 14.75 inches from centerline, and four outer row studs 18.0

inches from centerline (two inner, two middle, and two outer studs

on each bearing base - two such bases)

4) 55 rpm machine speed

5) Each inner row stud is (11.5/18) 2 as effective at transmitting

torque as each outer row stud. Each middle row stud is (14.75/18)2

as effective at transmitting torque as each outer row stud. This

conservatively assumes that the load on any stud will increase
linearly as its distance from the centerline increases.

Calculation:

Power at shaft (Hp) = 400 Kw x 1.34 (Hp/Kw)/0.85 (system efficiency)
= 631Hp

Operating torque (in-lbs) = 63030 x Hp/rpm = 63030 x 631/55 =

723,126 in-lbs

The four inner studs are equal to 4 x (11.5/18) 2 or 1.633 of the
outer studs

The four middle studs are equal to 4 x (14.75/18) 2 or 2.686 of the
outer studs

Total equivalent number of outer studs = 1.633 + 2.686 + 4 = 8.319

Shear load carried by each outer stud (ibs) = 723,193 in-lbs/(8.319
studs x 18 inches) = 4830 lbs.
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14.O APPENDIX B - Summary of Aerodynamic

Tip Brake Design Concepts

Background

Contract DEN3-260 has supported work to develop a reliable aerodynamic brake

as a secondary system for the 90-foot diameter rotor. The secondary system

could control rotor over speed in the event the generator drops off line and

the primary brake system fails.

Two tip brake designs were presented by Gougeon Brothers, Inc. (GBI) to NASA

at the Conceptual Design Review (CDR). The primary design at that time was

Concept A which is described below. The second design was a balanced winglet

brake which could provide problems in manufacturing and with respect to

tower clearance. At the CDR, NASA directed the contractor to do no further

work on the balanced winglet brake concept.

The following narrative describes Concept A and two additional conceptual

designs (Concepts B and C) proposed at the conclusion of the Rotor

Preliminary Design phase. Figure 63 illustrates the three concepts.

Concept A

Concept A is a power modulating tip brake which deploys by pitching as it

translates along the rotor spanwise axis. The pivot axis of this design is

35 percent of chord aft of the leading edge and the tip pitches nose down

during deployment.

The pivot shaft is secured to the actuating tip. Located on this shaft is an

adjustable stop collar and a compression spring that seats against the

outboard bearing case.

The inboard bearing is a non-metallic, low-friction, bushing which is bonded

into the blade. The outer bearing is a helical roller bearing that reacts

against raised followers on the pivot shaft. This bearing is slip fit into

the rotor and secured in place with machine screws around the perimeter of

the flange.

Pre-compression of the spring holds the tip and shaft in proper operating

orientation during normal machine operation. In the event of some specific

rotational rotor over speed, the centrifugal load of the tip and shaft begin

to overpower the spring which in turn allows spanwise translation of the

tip. As the tip translates, the helical bearing and follower produce a nose

down rotation of the tip, thereby decreasing lift and eventually increasing

drag. The tip will further deploy should the rotor continue to increase its

rotational speed, effectively controlling the rotor from a runaway over

speed.
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This tip design will modulate itself to match fluctuating power in the rotor

during an emergency situation. Concept A was not developed to completely

stop the rotor, It will only limit maximum rotor rotational speed during a
potential emergency over speed condition.

Disassembly of this tip brake would be accomplished by removing the machine

screws from the outer bearing flange and sliding the outer bearing, tip,

shaft, spring and stop collar out of the blade as a unit. Any adjustment to

the pre-compression of the spring can be done with this complete assembly
removed from the blade.

There is concern that the compression spring for this design may not be

practical. In order to react the weight of the tip and pivot shaft in a

40-50 G field, a high spring preload is required while maintaining a
sufficiently low spring constant to allow the proper amount of linear

translation of the tip (approximately 4 inches minimum) during a l0 percent

over speed. Centrifugal load varies as the square of rotation speed, so a I0

percent over speed would equate to an incremental force of 21 percent on the

spring to provide adequate translation. There might not be enough internal

volume at the tip brake's junction to properly incorporate such a spring.
Also, the outer bearing would likely not be an off the shelf item, since it

has to combine rotary and linear motion via a helical spline.

Concept B

In order to simplify the bearing and spring design for the pitching tip
utile, an alternative concept t_...... __._i__k_ui_L B) was u_u_eu. This design does

not translate along the rotor spanwise axis, therefore allowing a simple

roller design to be incorporated for the outer bearing. This outer bearing

would slip fit into the rotor and be held in position by means of a bearing
flange and machine screws.

The inboard bearing can, as with Concept A, be a low friction, nonmetallic

bushing that is bonded into the rotor. The pivot shaft for this design is
located at 35 percent chord aft of the leading edge and is bonded into the

tip. A spanwise translating slide weight, which is restricted from rotary

movement, features a helical guide that reacts against a raised follower on

the pivot shaft. A precompressed spring that bears against the outer bearing

shell holds the slide weight in proper position during normal operation of

the rotor. If a rotor rotational over speed condition develops, centrifugal
force on the slider weight increases, overcoming the spring force, and

allowing outboard translation of the slider weight. This translation causes

the tip to pitch nose down due to the helical spline and follower.

The tip is initially balanced aerodynamically, but as the tip rotates far
enough for stall to begin, the resultant drag vector reacts further and

further back on the foil such that a higher torque will be required to hold
the tip at 90 degrees to the apparent wind. Fast initial rotation with a

final high braking torque can be accomplished with a progressively steeper

helix angle inside the slide weight. If the machine speed increases, the

79



slide will translate further spanwise and cause increased rotation of the

tip, thereby preventing a runaway rotor. Similar to Concept A, Concept B

will only regulate the rotor at a given RPM during an over speed condition.

It will not bring the rotor to a stop.

Disassembly of the unit can be accomplished by removing the machine screws

from the outboard bearing flange and sliding the entire unit from the rotor.

An adjustable stop for the spring can be used to facilitate fine tuning the

specific rotor rotational speed at which the tip will begin deployment. This

adjustment can be done while the unit is removed from the rotor.

The bearings for this design should be off the shelf items. However, the

slide weight will be a specialized part to design and manufacture. The

spring sizing becomes much more reasonable than that for Concept A since

only the weight of the slide must be reacted as opposed to the weight of the

tip and shaft as in Concept A. The spring pre-load will still be larger than

the normal centrifugal force below some specified deployment initiating

rotational speed.

Concept C

A third concept (Concept C) was developed to alleviate the more complex

bearing and spring requirements of Concepts A and B. This concept is termed

a "one shot" unbalanced pitching tip brake. It differs from the previous two

in that once deployment is initiated, full tip rotation takes place and is

held until the rotor rotational speed approaches zero.

This style of brake is particularly attractive because once the tip brake

commences deployment the generator has dropped off line and the primary

rotor brake system has failed to function properly. This concept serves to

significantly reduce the rotor's rotational speed rather than avoiding

runaway as in Concepts A and B. In addition, before the rotor would again be

operational, Concept C would require service personnel to manually reset the

brake. This may be sound practice because, to experience emergency tip brake

deployment, difficulties with the wind turbine generator system have

developed and merit be checking before the machine is again started.

Both inboard and outboard bearings can be a low friction, non-metallic

bushing type. The outboard bearing is slip fit into the blade and fastened

with machine screws through a bearing flange. The inboard bearing is bonded
into the rotor.

The pivot shaft is bonded to the tip and is located at 50 percent chord aft

of the leading edge at the tip-rotor junction. The shaft is oriented

parallel to the leading edge of the rotor causing the center of area to be

located ahead of the pivot axis. Located on the shaft just inboard of the

outer bearing would be a torsion spring that will hold the tip in the 90

degree, fully deployed, position and help stabilize the tip while the rotor
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speed is decreasing or when it is at a stop. Incorporated in the same area

of the shaft would be a rotary damper to reduce the full deployment loads of
the tip.

As the rotor rotational speed reaches a pre-set limit, the centrifugal latch

mechanism releases, allowing aerodynamic forces and the torsion spring to
rotate and hold the tip in a 90 degree orientation. The rotor rotational

speed would then decrease.

Disassembly is accomplished in a manner similar to Concepts A and B in that

machine screws are removed from the flange of the outboard bearing and the

entire unit can slide out of the rotor. The centrifugal latch should also be

easily removable and could be adjusted for proper deployment load while
removed.

With the pivot shaft located at 50 percent chord, there is less internal

volume available for the necessary mechanisms. However, with the simplicity

of this design available volume should not present significant problems.
Should design efforts continue on tip brakes, there are several variations

of the damper and latch mechanisms for Concept C that could be even more
simple and reliable in long-term adverse conditions.

Summary

The length of these brakes has been consistently determined assuming only

one tip would deploy. This conservative approach drives both the length of

the tip and the size of the actuating mechanisms up considerably.

However, it has been recognized that if only one tip were to deploy, a large

rotor thrust load imbalance would result, causing excessive teeter forces,

therefore it might be more practical to develop a fail safe system whereby
both tips deploy together. A method of interconnecting the release
mechanisms inDesign C by means of a cable could result in near simultaneous

deployment. This would allow the length of the tip to decrease to 48 inches

as opposed to the 102 inch length originally sized. A design such as Concept
C, incorporating the interconnecting latch mechanisms, might approach a

level of reliability such that the 48 inch tip length could be used. This

would serve to minimize the complexity and weight penalty of an aerodynamic
tip brake assembly.
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15.0 APPENDIX C - Rotor Design Allowables Analysis

Introduction

The development of a complete set of fatigue and static wood/epoxy laminate

capabilities, or design allowables, was completed within this contractual

effort. Materials test data utilized as a basis for deriving allowables,

were generally taken from the MOD-5A rotor materials test program.

Several general concepts have been applied in the adjustment of mean test

data values to a final set of design allowables for the specific rotor

design developed in this effort. Clarification of these concepts will aid in

understanding the allowables computations in the following sections.

Fatigue data generated under the MOD-5A rotor materials test program did not

extend beyond ten million cycles and revealed no 'endurance limit.' Log-log

plots of maximum cyclic stress against accumulated cycle data were

mathematically curve fitted using the least squares linear regression

technique as shown in Figure 64. The resulting empirical description of the

material's fatigue behavior was used to extrapolate maximum cyclic stress

]evels to cycle counts beyond those which were tested. This approach yields

values which may be conservative from the point of view that at some unknown

non-zero stress level, an essentially infinite fatigue life may exist. The

linear regression curve used however, maintains a constant negative slope,

generating stress values which may be increasingly conservative as the

extrapolation extends beyond the actual test data. Figure 64 illustrates

this relationship.

r-1

 /rn.l P.I ;IJRAI,,r_. Ll rr-

Figure 64. - Possible vs. Mathematical/Empirical Fatigue Curve

Although the same species (Douglas fir) and visual grade of veneer was used

throughout the MOD-5A rotor materials test program, two different stress
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grades of veneer were used. The difference between these two grades, namely
Blade Grade 1 (BGI) and Blade Grade 2 (BG2), stems from a determination of
the stress wave propagation time in each veneer sheet, during processing,
using automated stress wave timing technology. Stress wave propagation times
generally correlate inversely with properties such as elastic modulus and
strength. Specifications for BGI and BG2veneer are contained within GBI
Materials Specification GMS-O01.Basically, BGI graded veneers are those
yielding stress wavetimes below a prescribed threshold while BG2graded
veneers are those yielding stress wave times within a range directly above
the threshold of BGI veneers. Veneers yielding stress wave times above the
upper limit of the BG2range are rejected for wind turbine application as
their strength and modulus values are generally too low to be desirable for
a stress critical application of this nature.

Sometesting was conducted under the MOD-5Amaterials test program which
permits correlation of BGI and BG2veneer based laminate performance. The
calculated correlation factors have been used, when necessary, to adjust one
veneer grade data base to design allowables which assumeuse of the other
veneer grade.

A statistical evaluation of MOD-5Amaterials test data scatter was conducted
to determine boundsof lowest expected performance. The product of the
standard deviation (_), multiplied by two, was used to establish a 95
percent confidence lower bound.

Generally, the static and fatigue performance of woodand wood fiber
materials are knownto decrease as the fiber moisture content increases.
MOD-5Amaterials test data was normalized to 12 percent woodmoisture
content (wmc) using an equation developed by the Forest Products Laboratory
(Madison, Wisconsin; ref. 8). That equation was developed for the adjustment
of static values but it was found, within the MOD-SAmaterials test program,
that it performed a very commendablejob of reducing the scatter of plotted,
non-moisture content normalized fatigue data. The 12 percent normalizing
value was selected because it is a standard choice in the wood industry and
it is also expected to be the highest moisture content level experienced by
a wood/epoxy rotor in any normal operating environment.

The static and fatigue performance of wood-based laminates are somewhat
sensitive to temperature over the range a rotor is expected to encounter.

Higher ambient temperatures will degrade static and fatigue capabilities of

the laminate, particularly in compression. Therefore, a temperature spectrum

adjustment factor has been used in the computation of design allowables.

Duration of load, or creep, is another effect which existing literature

shows to be significant in wood fiber-based structures. Wood fiber exhibits

better static and fatigue capability against loads imposed over shorter

(single or accumulated cycle) spans of time. Adjustments for this effect

have been made on the design allowables, which thereby account for the

influence of extended duration loads.
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The effect whereby material performance decreases as a stressed volume

increases was also studied and shown to be significant for wood/epoxy

laminates under the MOD-5A materials test program. Analysis of the data

allowed the derivation of empirical static and fatigue scale effect

equations. These equations were applied to determine adjustments to design

allowables relative to the specific volume of structural material within

this rotor design.

With this introduction of rotor design allowables concepts complete,

presentations shall be made in the following sections detailing the

computation of all relevant final design allowables. Stress ratio (R) refers

to the ratio of minimum stress to maximum stress, during cyclic fatigue.

Consistency with the development of MOD-5A design allowables exists
throughout the following calculations although some design specific

adjustment factors have been appropriately applied. Finally, note that all

allowables are strictly developed for the parallel to wood fiber direction.

In the outer rotor, the design is similar to previous designs where

secondary force flows (crossgrain) are known not to be limiting factors in

the design. For this rotor, secondary force flows are recognized as an

influence on the design, strictly in the hub, due to the large cutouts for

the low speed shaft and are treated by the use of bidirectional fiberglass

augmentation of the hub laminate.

R = +l (Steady Load) Tension Fatigue Allowable

Analysis

The MOD-5A static tension size effect testing included many butt jointed

laminate samples. Analysis of the BGI butt-jointed laminate data suggested a
static tension scale effect line of the form:

Mean Tensile Strength = 13500 x Volume ".05815

where strength is in psi and volume is in cubic inches.

For a characteristic (equivalent stress) volume of 6250 cubic inches

(cu.in.), the computed tensile strength is:

13500 x 6250-.o5815 = 8121 psi

The 90 foot rotor characteristic volume is taken to be 1 percent of the

total enclosed volume within the rotor shell, as was done for MOD-5A.

A BGI to BG2 veneer adjustment is needed because the outer rotor will use

BG2 veneer. This adjustment factor is the ratio of the MOD-5A material test
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results for BG2veneer with 3 inch staggerred butt joints (8534 psi) to the
results for BGI veneer with 3 inch staggerred butts (10183 psi).

The 2_adjustment (.84), temperature spectrum adjustment (.975), and
duration of load adjustment (.53) are the sameas used in the derivation of
the MOD-5Aallowables. 14 years is 4 x 108 cycles at 55 rpm.

Calculation

MeanTensile Strength at 12%wmc
(BG1laminate, 3 inch staggerred butt
joints, 6250 cu.in, volume)

BG1to BG2adjustment .838
2_ adjustment .84
Temperature spectrum adjustment .975
Duration of load adjustment .53

R = +i Tension Fatigue Allowable

=8121 psi

=2954 psi

Summary

R = +l Tension Fatigue Allowable

2954 psi

mean - 2_, 6250 cu.in., 12% wmc

BG2 veneer, temperature spectrum, 14 year duration

R = O.1 Tension Fatigue Allowable

Analysis

The mean peak tensile stress at 106 cycles (6369 psi), the exponent (B) for

the strength vs. cycles curve (-.0897), the mean peak tensile stress at 4 x

108 cycles are all taken from available MOD-5A materials test data. The data

is for a mixed group of BG2 and BGI test results with 16 samples total. The

samples feature a cylindrical cross section with a 32 cu.in, test volume

with three butt joints staggered 3 inches in the inner three laminations. No

attempt was made to remove the BGI data or to compensate for its presence

because the two data groups overlay each other rather well. Additionally,
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the results are known to include a conservative factor in that there is

about twice too much butt joint in the sample volume compared to normal

rotor laminate.

The size effect volume exponent (-.09583) is based on a comparison of the

MOD-5A large scale tension fatigue test results with the smaller scale

tension fatigue results.

The 10% wmc to 12% wmc correction is necessary because the initial MOD-5A

data is based on a 10% wmc level. The adjustment factor used (.969) is the

standard moisture correction for static tension as derived by the FPL.

The 2_correction (.84), and temperature spectrum adjustment (.975) are the
same values used in the derivation of the MOD-5A allowables.

Calculation

Mean Peak Tensile Stress at 106 cycles, 10% wmc =6369 psi

106 to 4 x 108 cycle adjustment (400 s) .5842

Mean Peak Tensile Stress at 4 x i08 cycles,
i0% wmc =3721 psi

2_adjustment .84

10% wmc to 12% wmc adjustment .969

Size effect adjustment (6250/32) -'°9ass .595

Temperature spectrum adjustment .975

R = 0.I Tension Fatigue Allowable =1757 psi

Summary

R = 0.I Tension Fatigue Allowable

1757 psi

mean - 2_, 6250 cu.in., 12% wmc

BG2 veneer, temperature spectrum, 4 x 10 8 cycles
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R = -i (Fully Reversed), Fatigue Allowable

Analysis

The mean peak stress at lO6 and 4 x 108 cycles, the exponent B, and the 95%
confidence lower bound are taken from available MOD-5A materials test data.

The 10% wmc to 12% wmc adjustment (.897) is the standard FPL derived

moisture correction for static compression. The size effect exponent
(-.05815) is the same as used for static tension. The 65 cu.in, volume

attributed to the test samples is to adjust for the ratio of butt joints per

unit volume in the test volume versus the rotor laminate volume (ie. it is

the volume of rotor laminate which has the same amount of butt joint as did

the test pieces). The BGI to BG2 veneer adjustment is the ratio of MOD-5A

butt jointed compression results corrected to 12% wmc for BG2 veneer (6452

psi) to the similar results for BGI veneer (6968 psi). The 2_ adjustment
(.84) and the temperature spectrum adjustment (.94) are identical to those
used in the derivation of the MOD-5A allowables.

Calculation

Mean Peak Fully Reversed Strength at

106 cycles, 10% wmc

106 to 4 x 108 cycle adjustment •599

Mean Peak Fully Reversed Strength at

4 x 108 cycles, 10% wmc

2G adjustment .84

10% wmc to 12% wmc adjustment .897

Size effect adjustment (6250/65) -.05815 .767

Temperature spectrum adjustment .94

BG1 to BG2 veneer adjustment (6452/6968) .926

R = -1 (Fully Reversed), Fatigue Allowable

=3415 psi

=2045 psi

=1029 psi

Summary

R = -I (Fully Reversed), Fatigue Allowable

1029 psi

mean - 2_, 6250 cu.in., 12% wmc

BG2 veneer, temperature spectrum, 4 x 108 cycles
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R = 0.I Compression Fatigue Allowable

Analysis

The mean peak compressive stress at 106 cycles (5586 psi), the exponent B
(-.0590), and the 95% confidence lower bound are taken from the MOD-5A

materials test data. The 10% wmc to 12% wmc correction (.897) is the

standard FPL derived method for static compression. The size effect exponent

(-.0075) is the same as used in derivation of the MOD-5A allowables. The

conservative 32 cu.in, volume for the test samples is again used to balance

the fact that a BG1/BG2 mix is present in the data base. As was the case for

the tension-tension fatigue data, the two data sets are reasonably well

interspersed and no attempt was made to explicitly remove the BGI data. The

duration adjustment is taken to reflect the fact that an 8 Hertz (Hz)

compression test to 4 x 108 cycles would take 13,900 hours (8 Hz was the

test rate), but a 4 x I08 cycle design life is 13.8 years at 55 rpm. The

duration correction for 13.8 years is virtually identical to that for 20

years, so the MOD-5A factor of .755 is applied.

The 2G adjustment (.84) and temperature spectrum adjustment (.9) are

identical to those used in the derivation of the MOD-5A allowables.

Calculations

Mean Peak Compressive Stress at 106 cycles,
10% wmc =5586 psi

106 to 4 x 108 cycle adjustment (400 B) .7022

Mean Peak Compressive Stress at 4 x I0 a cycles,

10% wmc =3923 psi

2_ adjustment .84

10% wmc to 12% wmc adjustment .897

Size effect adjustment (6250/32) -.0075 .961

Temperature spectrum adjustment .900

Duration of load adjustment

(13900 hours to 20 years) .755

R = 0.i, Compression Fatigue Allowable =1930 psi
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Summary

R = 0.i Compression Fatigue Allowable

1930 psi

mean - 20, 6250 cu.in., 12% wmc

BG2 veneer, temperature spectrum, 4 x 108 cycles

R = +l (Steady Load), Compression Fatigue Allowable

Analysis

The mean compressive strength value is taken from the MOD-5A material test

data corrected to 12% wmc. The standard .84 adjustment factor for 2_is

applied and is nearly identical to the calculated 2_ factor for the data set

(.834).

The duration of load adjustment (.53) from 5 minutes to 14 years and the

temperature spectrum adjustment (.90) are identical to those used in the
derivation of the MOD-SA allowables.

Calculation

Mean Static Compressive Strength at 12% wmc =6452 psi

2_ adjustment .84

Size effect adjustment
(none for compression, R=+l) 1.O0

Temperature spectrum adjustment .90

Duration of load adjustment .53

R = +l (Steady Load), Compression Fatigue Allowable =2585 psi

Summary

R = +l (Steady Load), Compression Fatigue Allowable

2585 psi

mean - 20, 6250 cu.in.,12% wmc

BG2 veneer, temperature spectrum, 14 years
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GoodmanDiagram, 4 x 108 Cycles

The graph in Figure 65 is the Goodmandiagram which results whenthe
preceding allowables are plotted. The curve is skeweda little toward the
compression side by the explicit treatment of scale effect, which is
currently assumedto have its maximumdepressive effect upon tension-tension
allowables in the vicinity of R = 0.i. This causes the tension side of the
diagram to be relatively linear, and the performance advantage of tension
relative to compression observed in laboratory sized samples no longer
exists. On the whole, the diagram is relatively symmetrical and the tension
and compression sides of the rotor can be stressed about equally. It appears
that using equal thickness for high and low pressure shells is a reasonable
procedure for wood/epoxy rotors of intermediate (MOD-O)size.

Figure 65. - Goodman Diagram - 4 x 108 Cycles '

Fatigue Allowables for lOZ Cycle Loading

As an additional design check, the fatigue capability of the design was

evaluated against a set of elevated loads which reflect a maximum operating

load condition. It is clear that such loads will only be present

occasionally because they represent an elevated wind condition of roughly 33

mph. Therefore it would be inappropriate to use the 4 x lOS cycle allowable

in evaluating performance for this infrequent high load condition. A second

Goodman diagram for 107 cycles was therefore developed for this elevated
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load case. The I07 cycle choice is equivalent to about 3000 hours at 55 rpm,

or roughly i/3 of a year. That is far more than the prototype rotor will

experience on the NASA MOD-O machine at Plumbrook, Ohio (as is 4 x 108

cycles at normal operating loads). The elevated load, 10 7 cycle level was

chosen as representative of what a commercial rotor might see in a lifetime

of operation, consistent with choosing 4 x 108 cycles to represent a

lifetime of normal operating loads.

Adjustment to the 107 cycle level is straightforward, only the load duration

adjustment or cycle adjustment shown in the previous sections need be

changed. A summary of the changes and results is shown in the following
table.

3000 hr I06 to 107 Adjusted

Loading Duration Cycle Allowable

Condition Factor Factor Stress, psi

R = +i Tension .805 1.O 4487

R = .I Tension 1.0 .813 2446

R = -I Reversed 1.0 .821 1410

R = .i Compression .936_ .873 2975

R = +i Compression .805 1.0 3926

.936 =

.777 347 hour duration factor

.830 3000 hour duration factor

where 347 hours is 107 cycles at 8 Hz as actually tested, and 3000

hours is 107 cycles at 55 rpm as machine would operate

Goodman Diagram, 107 and 4 x 108 Cycles

Figure 66 is a Goodman Diagram which shows the allowable stress curves for

both the normal operating load case of 4 x 108 cycles (20 years) and the

maximum operating load case of 107 cycles (3000 hours). A substantial

increase in allowable stress for the reduced cycle case is evident, as

would be expected.
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The basic character of the curve is the same in both cases, with compression

showing slightly higher allowable stresses, except near R = +l, where

tension is favored.

Allowables Upgrade for BGI Unjointed Hub Material

As part of the MOD-5A fatigue allowables development, a comparison was made

between butt jointed fatigue results and those for scarf jointed laminates.

Comparing performance at 106 cycles, so that uncertainties associated with

extrapolating outside the test data range are eliminated, we find:

Data Type

Number Mean Peak

of Data Stress at

Points lO 6 Cycles, psi Improvement

Tension-Tension

Butt Joints/BGl & BG2

Scarf Joints/BGl

16 6373-

5 7716

+21%

Fully Reversed

Butt Joints/BGl

Scarf Joints/BGl

i0 3415]

9 38971
+14%

Compression-Compression

Butt Joints/BG1

Scarf Joints/BGl

17 5997_

7 6767_

+13%

_Comparison conducted at 3 x 105 cycles because of high cycle data

anomalies in the scarf data set

It should be noted that the data sets for tension-tension and

compression-compression scarfs are small (5 points and 7 points

respectively) and thus the associated improvement percentages have a rather

large uncertainty and should be used with care. Much of the following

discussion is devoted to trying to draw reasonable conclusions from

sometimes rather sparse or anomalous data sets. The reader who does not

really need or desire that level of detail can save considerable effort by

skipping ahead to the overall conclusion relative to the Goodman Diagram

Upgrade. This conclusion is presented on page 98.

As mentioned in developing the butt jointed material allowables, the butt

jointed test samples had twice the amount of butt joints of bulk rotor

laminate, per unit volume. A volume correction factor is easily applied to

94



the above improvement percentages to approximately account for volume

differences, and the results of such a correction are shown in the next

table.

Scarf vs. Butt Improvement
I

Test Type Volume Adjustment Unadjusted Adjusted

Tension-Tension 2-.09853 =.93 (-7%) 21% 14%

Fully Reversed 2--o5815 =.96 (-4%) 14% 10%

Compression-

Compression 2-.0075 =.99 (-1%) 13% 12%

The difference between BG2 and BG1 veneer in fatigue has not been

specifically established via test. The best which can be done at this time

is to assume that the difference in fatigue would be the same as the

difference in the associated static properties.

From the MOD-5A materials testing we find (adjusted to 12% wmc):

Maximum Tensile

Strength (psi)

Maximum Compressive

Strength (psi)

BGI BG2 BGI BG2

No joints 9706* 10016 7345 7149

Butt joints 10183 8534 6968 6452

_'rhis value appears to be anomalously low - see later discussion
in this section.

Combining both the no joint and butt joint samples into an overall

comparison of BGI vs. BG2 to reduce the effect of possible data anomalies,
we find:

Tension:

Compression:

9706 + i0183

10016 + 8534

7345 + 6968

7149 + 6452

= 1.072, +7%

= 1.052, +5%
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In order to arrive at an overall improvement for going from BG2to BGI and
also eliminating butt joints, we proceed as follows:

Tension-Tension - Since the butt joint test population was a BG2 and

BGI mix, presumably about half o[ the BGI vs. BG2 correction is

already present in the butt vs. scarf fatigue comparison, so add 1/2

of the BG2 to BGI tension improvement (7%/2 = 3.5%). Use 3 percent

conservatively.

Fully Reversed - Apply the compressive correction as is done for

moisture.

Compression-Compression - Apply the compression correction.

Property

Tension-Tension (R=O.I)

Fully Reversed Fatigue (R=O.I)

Compression-Compression (R=O.I)

Overall Improvement

17% (14% + 3%)

15% (10% + 5%)

17% (12% + 5%)

Design Driver Tension-Tension (R=0.1) Improvement = 17%

adjusted from BG2 to BGI veneer

and adjusted from butt joints to unjointed laminate

The BG2 vs. BG[ allowables upgrade for both tension and compression is

already given on this page. The static butt jointed vs. unjointed upgrade is

also required to determine the overall hub static upgrade for the R = +i

allowable.

Some care must be exerted in determining the butt jointed vs. unjointed

tension upgrade because there is evidence to suggest that the unjointed BGI

results were artificially low and with high scatter, probably due at least

in part to the effect of rough surfaced veneer. (An unusually high

coefficient of variation for this data supports that hypothesis. The same is

true for the anomalous compression results cited in the following discussion

of the compression upgrade.) Perhaps the best that can be done is to average

together the results for BG], BG2, and C veneer grades in order to minimize

the anomalous BG] results, since additional testing was not conducted to

resolve the initial anomaly. (An ultrasonically screened, C-grade veneer had

been evaluated in the MOD-5A materials test program in 1981.) The MOD-5A

tension results for the three veneer grades are shown in the following

table.
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Tensile Strength for Veneer Grades

at 12% wmc, psi

I
BG1 BG2 C

Unjointed 9706 i0016 8972

Butt-jointed 10183 8534 7392

Average Upgrade:

9706 + 10016 + 8972

10183 + 8534 + 7392
= I.i0, +10%

With a BG2 to BGI tension upgrade of 7 percent, the combined upgrade for the

unjointed BGI hub material is 17 percent (10% from jointed to unjointed + 7%

from BG2 to BG1).

Tension Upgrade for Unjointed BGI Hub Material

R = +l, Tension = +17%

An anomalous condition of a lesser degree also appears to exist in the

MOD-5A compression data in that the results for BG2 butted material are

inexplicably lower than those for butted C grade material. A similar

averaging procedure is again called into use to reduce the effect of this
anomalous result.

Compressive Strength for Veneer Grades
at 12% wmc, psi

| I

BGI BG2 C

Unjointed 7345 7149 6912

Butt-jointed 6968 6452 6674

Average Upgrade:

7345 + 7149 + 6912

6968 + 6452 + 6674
= 1.065, +7%

With a BG2 to BGI compression upgrade of 5 percent, the combined upgrade for

the unjointed BGI hub material is 12 percent.
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Compression Upgrade for Unjointed BGI Hub Material

R = +i, Compression = +12%

The R = +l tension upgrade of 17 percent is the same as the R = O.1

tension-tension upgrade of 17 percent, and is nearly the same as the R = -I

(fully reversed) upgrade of 15 percent. Since it is the tension side of the

Goodman diagram which drives the design, that alone is sufficient

justification to choose a 17% hub allowables upgrade. In addition, note that

the compression-compression upgrade of 17% is slightly higher than is

likely, and this is probably due to a statistical variability associated

with having only seven scarf fatigue data points. The 12 percent, R = +l

compression upgrade is more believable, but the issue is academic since

neither drive the design.

Overall Upgrade for BGI Hub Material

Goodman Diagram Upgrade = 17%

Static Tension Allowable

Analysis

The basis for the static tension allowable is the curve fit to the static

tension size effect data from the MOD-5A materials test data. With a

characteristic volume of 6250 cu.in, for this 90 foot diameter rotor, the

mean tensile strength allowable is 8121 psi for butt-jointed BGI material. A

2_adjustment factor of .84 is used as was done for MOD-5A. The BGI to BG2

adjustment of .838 is again used, as was done in the derivation of the R =

+I tension fatigue allowable. The MOD-5A extreme temperature adjustment

factor of .95 is replaced by an extreme temperature adjustment factor of .93

to reflect the fact that this rotor is being designed to an upper

temperature extreme of 120 degrees Fahrenheit (F), rather than the MOD-5A

value of 104 degrees F (against assumed average test temperature in both

cases of 68 degrees F).

Calculation of extreme temperature adjustment factor:

100%-[5% x (120-68)/(104-68)] = 93%
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Calculation

Mean tensile strength

(12% wmc, butt-jointed, BGI, 6250 cu. in.)

=8121 psi

2a adjustment .84

BGI to BG2 adjustment .838

Extreme temperature adjustment factor .93

Outer Rotor Static Tension Allowable =5316 psi

Butt-jointed BG2 to Unjointed BG1 upgrade

(Same as calculated for R = +l tension) 1.17

Inner Rotor (Hub) Static Tension Allowable =6220 psi

Summary

Static Tension Allowable

Outer Rotor = 5316 psi (butt-jointed BG2)

Inner Rotor (Hub) = 6220 psi (unjointed BGI)

mean - 2G, 5 minute load duration, 120 degrees F, 6250 cu.in.

Static Compression Allowable

Analysis

The Coefficient of Variation (COV = standard deviation/mean strength) of the

MOD-5A BG2, butt-jointed compressive test data is suspiciously high, and the

mean compressive strength of 6452 psi is lower than the mean of 6674 psi for

the C grade butt-jointed material. This lends a conservative factor to the

following calculation. The extreme temperature factor of .70 for 120 degrees
F is the same as was used in the MOD-OA wood/epoxy blade design. The 20"

correction of .84 and the proportional limit factor of .85 are the same as

were used in the MOD-5A allowables derivation. The butted BG2 to unjointed

BGI upgrade is the 12% factor as calculated for R = +I compression.
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Calculation

Mean Compressive Strength

(12% wmc, butt jointed BG2) =6452 psi

2_adjustment

Extreme temperature adjustment

Proportional limit adjustment

.84

.70

.85

Outer Rotor Static Compression Allowable =3225 psi

Butt-jointed BG2 to unjointed BG1 upgrade 1.12

Inner Rotor (Hub) Static Compression Allowable =3612 psi

Summary

Static Compression Allowable

Outer Rotor = 3225 psi (butt-jointed/BG2)

Inner Rotor (Hub) = 3612 psi (unjointed BGI)

mean - 20", 5 minute load duration, 120 deg.F, proportional limit

Finger Joint Allowables

Overview

It has been generally accepted that the presence of finger joints would

cause the greatest loss of performance in tension-tension fatigue, and

therefore a series of finger joint fatigue tests have been performed at R =

0.i tension fatigue. Samples like those used to test butt-jointed and

scarf-jointed laminates were used, so direct comparisons can be made. From

the MOD-5A test data, the mean peak tensile stress for a BG2/BGI mix of

butt-jointed samples at 106 cycles was 6369 psi at 10% wmc. This value is

corrected downward by 3 percent to go from the mix to pure BG2 veneer, and

by an additional 3.2 percent to go from 10% wmc to 12% wmc.
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Peak tensile stress at 106 cycles

(butt-jointed) =6369 psi

BG2/BGI mix to BG2 adjustment (1/1.03) .971

10% wmc to 12% wmc adjustment (1/1.032) .969

Peak tensile stress at 106 cycles

(butt-jointed, BG2, 12% wmc) =5992 psi

Peak finger joint stress at 106 cycles

(BG2, 12% wmc) =4550 psi

The peak finger joint stress comes from the current plot of the finger joint

test results corrected to 12% wmc. The value of 4550 psi is 76 percent of

the comparable 5992 psi value for butt-jointed BG2 veneer at 12% wmc. At

first look this would appear to imply a need to substantially thicken the

joint region to compensate the lowered allowable, and this could be so, but

the rotor has a much larger volume of laminate than do the finger joints,

and thus a separate size correction must be made in order to properly

determine the finger joint allowable.

Analysis

The volume of the test region of the finger joint samples is the standard 32

cu.in, test volume. The configuration tested was a 6 inch long f_nger with

an additional inch of cylinder beyond each finger tip. The characteristic

volume can be taken to be the 4 square inch (sq.in.) circular cross-section

times the 6 inch finger length equals 24 cu.in., directly within the joint

region.

The rotor cross-sectional area at the finger joints is:

[21.8 x 34.2 +_(10.9) ] = 1119 sq.in.

There are two finger joint regions, each 11.5 inches long, so the overall

finger joint spanwise length is a total of 23 inches. Multiplying the above

two numbers gives the total finger joint region total enclosed volume of

25,737 cu.in. Because the stress is not uniform across the rotor volume, a

form factor should be applied to calculate an equivalent (uniformly

stressed) volume. The 1 percent form factor used in calculating the rotor

allowables for the MOD-5A and elsewhere on this rotor will again be used
here.
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Calculation

Finger joint test sample
characteristic volume: 24 cu.in.

Rotor finger joint characteristic
volume (25,737 x 0.01): 257 cu.in.

Size adjustment (257/24) -.09853 : .792

Peak finger joint stress, corrected for volume
(BG2, 12%wmc, lO6 cycles)

2_ adjustment .84

106 to 4 x 108 adjustment [400 -.0897 ] .584

Temperature spectrum adjustment .975

Peak finger joint tensile stress

=3604 psi

=1724 psi

Summary

Finger Joint Allowable

R = 0.i, Tension Fatigue

1724 psi

mean - 2_, 257 cu.in, volume, 12% wmc

BG2, temperature spectrum, 4 x 108 cycles

Discussion

The R = O.1 tension finger joint allowable of 1724 psi calculated above is

within 2 percent of the allowable of 1757 psi for the butt-jointed BG2

veneer which makes up the bulk of the outer rotor. In effect, the size

effect correction has compensated the loss of strength associated with the

finger joints. The butt jointed material is already suffering a strength

knockdown due to the detrimental effect of the butt joints, and one should

note that butt joints are eliminated from the finger joint region so that it

is beginning with an elevated basic strength. In addition, the finger joint

region is only a small fraction of the overall rotor volume, so it does not

experience as large a reduction due to scale effect. The perhaps surprising

result is that very little reduction in the allowable is required in the

finger joint region. Since a data base of finger joint fatigue data exists

only for R = O.1 tension, it is not possible at this time to directly

calculate finger joint allowables at other stress ratios. However, the

detrimental effect of defects appears to be greatest for tension-tension
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fatigue, and evidence to support this exists in that the fatigue curve slope

for butt-jointed material is much larger in tension-tension fatigue than it

is in fully reversed or compression fatigue. So we should already be seeing
the worst effect of the finger joint induced stress raisers (defects) in the

existing tension-tension fatigue results. It would thus appear to be a

conservative position to take 98% of the outer blade Goodman diagram as a

characterization of the finger joint fatigue performance, provided that the
I1.5 inch fingers have proportions geometrically similar to those used in

the MOD-5A materials test program.

Finger Joint Fatigue Performance Assumed |

To Be 98 Percent of Outer Rotor Goodman Diagram I

Low Speed Shaft Hole - Tension Side

The shape finally chosen for the tension side low speed shaft hole was a

football shaped hole formed with 21 inch radius circular arcs, as
illustrated in Figure 67.

2-L = l&

v

Figure 67. - Tension Side Low-Speed Shaft Hole Geometry

The primary motivation for this choice was the desire to obtain a lower

value of stress concentration along the edge of the hole than would exist

for a circular hole. The classical result for the stress concentration at

the tip of an elliptical hole in a homogeneous isotropic material is:

S = So x [i + 2 x (L/R) .s ]

where So is the average stress away from the hole, L is 1/2 of the
hole width, and R is the radius of curvature
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For the football shape chosen:

S/So = [i + 2 x (9/21) "s ] = 2.31

By comparison, a circular hole has a stress concentration factor (S/So) of

3.0, so a circular hole would exhibit a peak stress 30 percent higher than

does the selected football shaped hole. This is a useful and easily obtained

reduction of peak stress.

Neither wood nor laminated wood/epoxy composite is a homogeneous isotropic

material. The lamination process does improve overall homogeneity

significantly, but the highly anisotropic nature of the underlying wood is

still very evident. This is where +/- 45 degree fiberglass augmentation

plies become useful. The purpose of this augmentation is to increase the

shear stiffness of the augmented laminate to a level where the ratio of

longitudinal stiffness along the major stress direction to shear stiffness
is about the same as the 2.66 ratio which exists for classical homogeneous

isotropic materials such as metals.

E/G = 2 x (I +v)

where E is the Modulus of Elasticity, G is the Shear Modulus, and

is Poisson's ratio

Note that if the shear stiffness could be raised to arbitrarily high levels

without changing the longitudinal stiffness, this would mean that the shear

lag would approach zero and only a vanishingly small stress concentration

would exist along the side of the hole.

The football shaped tension side hole is to be provided with a 0.5 inch

thick hole liner. Ignoring for the moment that this hole liner is of

relatively high modulus unidirectional carbon fiber/epoxy laminate and will

therefore accept higher loading than the fiberglass augmented wood/epoxy

laminate, the purely geometric effect the change in hole dimensions has upon

the idealized stress concentration factor can be calculated:

S/So = [I + 2 x (8.5/20.5) "s ] = 2.29

This calculation makes it clear that the stress concentration factor is not

sensitive to small changes in hole dimensions, and one can use a 2.3 to 1

stress concentration factor for the tension side low speed shaft hole

without worry that small manufacturing variations could upset the

calculations.

The 2.3 to 1 stress concentration factor is applied directly to the edge of

the hole at rotor spanwise centerline (the widest part of the hole). In

order to estimate the hole edge stress at other locations along the rotor

spanwise centerline, it was assumed that the chordwise stress distribution
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could be approximately modeled by a triangular distribution of excess stress

superimposed on a rectangular base of normalized stress, as shown in Figure
68.

v .

Figure 68. - Geometry of Stress Redistribution Due to Cutout

We require that the triangular distribution of excess stress produce a

stress concentration of 2.3 at the hole edge when h = 9 at rotor centerline.

We also require that the excess stress vanish beyond the hole, so that a

normalized stress equals 1 when h = O. A final constraint is that the total

area under the stress curve must remain constant everywhere along the hole,

so that overall stress is not being created or destroyed, but is simply

being moved from the cutout into the remaining nearby material. These

conditions taken together dictate a characteristic chordal width dimension

for the assumed stress field, which can be shown to be 22.85 inches for S =
2.3 and h = 9. We can then write:

h + c = 22.85

and

k= 1 +2 ( h/ c)

where 22.85 is the characteristic chordwise dimension and k is the

hole edge stress concentration factor, S/So for other values of hole
half width h.

If one attributes to the carbon fiber liner the properties of the augmented

fir laminate, the equations become:

h + c -- 21.58

and again,

k=1+2 (h/c)
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Assuming that the flatwise stress distribution extends about 22 inches

either side of hole centerline is seen to be quite consistent with the rotor

hub shape and 57.5 inch chordal dimension.

Tension Hole Allowable Perspective

As will be seen in the discussion of the compression side hole at the end of

the section, a wood or wood composite test sample with a hole in it may

perform in a way which seems to largely ignore the classical effects of

stress concentration. A perfect example of this is the effect of butt joints

upon laminate performance. Butt joints are certainly holes in the spanwise

fiber composing the laminate, and their corner radii are worse (smaller)

than those for a perfectly circular hole. So we might expect the presence of

butt joints to degrade laminate performance by a factor of three or even

more, since three is the stress concentration factor for a circular hole.

This does not occur. The worst effects are seen in fatigue, and even there

the percentage reductions due to butt joints are rather modest, as shown

below.

Scarf Joint Improvement on 108 Cycle Butt Joint Performance

Tension-Tension +14%

Fully Reversed +10%

Compression-Compression +12%

Note: See upgrade analysis for BGI unjointed hub material

These facts argue that using classical stress concentration factors for

holes in wood composite structures is a very conservative procedure in at

least some known cases.

The explanation for this behavior seems to lie at least in part in the realm

of scale effect i.e. the allowable for the very small high stress volume

near the butt can be taken to be much higher than for the majority of the

wood away from the butt. There is still a difficulty in that we consider

that there is little or no scale effect in compression, and yet the hole

toleration effect is still strong in compression. One can take recourse to

the argument that failed fiber must still carry considerable load in

compression (unlike tension) and this is surely so. Nonetheless, the matter

of wood laminate's ability to tolerate holes must be regarded as rather

remarkable when considered from the viewpoint of classical stress

concentration factors.

As an illustrative example we can calculate the strength of the tension side

hole by imagining it as a very large butt joint and using scale effect to

relate its performance to the measured performance of butt jointed laminate.
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Test sample butt joint volume
(0.I x 0.I x 6.75): 0.0675 cu.in.

Circular rotor hole volume
(12 x 18 x 22): 7128 cu.in.

Form factor (account for non-uniform
stress with depth): 0.01

Effective rotor hole volume

(7128 x 0.01): 71.3 cu.in,

Volume ratio (71.3/0.0675): 1056

Tensile fatigue scale factor

I056-,o 9_3 : 0.504

Peak Tension-Tension stress

(butt-jointed laminate, 4 x 108 cycles) =3721 psi

2_ adjustment .84

10% wmc to 12% wmc adjustment .969

Temperature spectrum adjustment .975

Size effect adjustment .504

..Tension Hole Fatigue Allowable =1488 psi ]
i

The basic R = 0.I tension fatigue allowable derived for the BGI hub material
is:

1757 x 1.17 = 2056 psi

where 1757 is the allowable (in psi) for butt jointed BG2 veneer

laminate and 1.17 is the upgrade factor for unjointed BG1 veneer

laminate

If scaling a butt joint to 18 inch size were a valid procedure, an allowable

of 1488 psi could be used against net cross-section with stress

concentration effect already accounted for (since stress concentration near

butt joints was present during the tests). In our analysis, we have
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explicitly accounted for a stress concentration of 2.3 to I, with an

allowable of 2056 psi:

therefore,

2056/2.3 = 894 psi (So in Figure 68)

894 x 1.65 = 1475 psi

where 1.65 is the average stress where a triangular distribution of

concentrated stress (2.3 times the normal stress) is superimposed

over the normal stress as is shown in Figure 69.

1.0

Figure 69. - Geometric Determination of Average Stress

That the 1475 psi (against net cross-section) allowable actually used in the

design is so close to the 1488 psi (also against net cross-section)

calculated above must be regarded as largely fortuitous since the

calculations involve many approximations and simplifications. Nonetheless,

it is in£eresting that scale effect does seem to provide some unification

between two very different hole sizes, and there is some added confidence in

seeing two very different methods produce similar allowable values.

Low Speed Shaft Hole - Compression Side

The rotor compression side hole has been given relatively less attention
than the tension side hole for four basic reasons:

1. Compression side material in this hub operates at lower strain

because the neutral axis is shifted toward the hub compression side

by the thick interior buildup.

2. The compression side hole receives considerable help from the

steel hole liner/teeter stop weldment which carries load accross the

hole.
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3. Compression side failure would be gradual if it did occur.

4. Some fatigue data exists (from MOD-5A testing) which indicates
that a rather modest knockdown is sufficient to account for a hole

in compression.

A brief summary of the existing data on holes in compression will be given

here. The work referred to was performed in support of the MOD-5A materials

test program at a time when it appeared that aan internal teeter with a hole

through the compression side might be used. Rectangular samples 12 inches
long, 6 inches wide, and 15 laminations thick ( 0.i inch thick veneer) with

a 2 inch diameter hole in the center were tested both statically and in

fatigue. Samples were both normal fir laminate and fir laminate augmented

with +/- 45 degrees fiberglass. Both unreinforced holes, and holes with a

1/8 inch fiberglass reinforcing ring were tested.

After adjustment to 12% wmc, the compressive fatigue results (R = 0.I) taken
et 106 cycles were approximately as follows:

Unaugmented Laminate, Unreinforced Hole_

Augmented Laminate, Unreinforced Hole_

Unaugmented Laminate, Reinforced Holej

4000 psi at lO6 cycles

Augmented Laminate, Reinforced Hole: 5000 psi at 106 cycles

Note: stress computed against net cross-section at 12% wmc

The 5000 psi result at 106 cycles is virtually the same performance level as

was obtained for butt jointed laminate at 106 cycles during the MOD-5A test

program (5011 psi at 106 cycles and 12% wmc). The conclusion is that the

comppression side hole does not show much stress concentration knockdown,

particularly when augmented and in the presence of a hole liner, as this hub

will be. The design margin is consequently large.
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16.0 APPENDIX D - Exploratory Testing of a

Wood/Epoxy/Graphite Composite Concept

Summary

In support of improving load take-off stud performance, relative to

wood/epoxy composite wind turbine blade applications, a concept was proposed

for increasing the elastic modulus of the laminate, by f_fty percent, in the

region of the studs. The proposed scheme for achieving the stiffness

increase was to alternate plies of unidirectional graphite fabric with the

standard plies of 0.1 inch thick Douglas fir veneer. A minimum scope test

program was designed and implemented to explore the concept.

Results of testing the graphite augmented wood/epoxy laminate in compression

ramp-to-failure and compression fatigue over a range of temperatures

indicate that the concept is appropriate for stud applications with the only

indicated limitation being at elevated temperatures. In tension stud

ramp-to-failure and fatigue tests, the augmented laminate was examined

relative to its interaction with a bonded stud. The results, although

clouded by steel fatigue, were also encouraging. Finally, several

ramp-to-failure and fatigue tests were conducted on compression samples

simulating the region where the basic wood/epoxy laminate would transition

(or merge) into the graphite augmented laminate. The results of these tests

provide additional confidence for applications of the concept.

Background

Currently, bonded load take-off studs are utilized for the transfer of all

loads from wood/epoxy composite wind turbine blades to a mating metal hub. A

series of five stud designs were recommended by GBI for testing because they

isolate principal variables capable of extending performance of load

take-off studs while maintaining reasonable materia]s and manufacturing
costs.

In this group of proposed stud designs, one of the designs (Design 5)

assumes the use of augmented laminate, in the region of the tapered stud.

The augmented laminate would have nearly a fifty percent higher elastic

modulus over the baseline wood/epoxy laminate. Such a scheme would serve to

reduce the elastic modulus difference between the steel studs (E=3.0 million

psi) and the wood/epoxy laminate (E=2.0 to 2.2 million psi) into which the

studs are bonded. Reducing this difference in modulus should serve to reduce

peak shear stress levels in the epoxy. Epoxy shear failure has been the

prevailing fatigue failure mechanism in all stud testing programs to date.

It is also anticipated that the one-time load carrying capability of

bonded-in-studs would be enhanced because this failure mode is typically

linked to the bulk laminate shear strength. The bulk laminate shear strength

is also expected to improve along with the increase in bulk laminate elastic
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modulus due to the introduction of parallel fibers which are higher in

stiffness and strength than the wood fibers.

The use of unidirectional graphite, placed between each veneer ply and

oriented parallel to the wood fiber in the laminate, was proposed by GBI for

achieving the desired modulus enhancement. Because a preliminary

investigation indicated that unidirectional fabric thicknesses of more than

0.015 inches (dry), when alternated between plies of Douglas Fir veneer,

result in no further increase (and in some cases a decrease) in compressive

strength, a fabric of nominally 0.010 inches thick was selected as the

principal augmenting candidate. This determination of an optimum fabric

thickness may be attributed to the compressive dependence of the thin layers

of carbon fiber on the thicker wood layers for column stability. These wood

layers, of a relatively constant thickness, may be limited in their ability

to support slightly thicker layers of carbon fiber. To further explore this

issue, very limited evaluation of a unidirectional fabric with dry thickness

of 0.015 inches was conducted in this test program.

GBI was tasked with developing and executing a minimal scope test program to

ensure that this graphite augmentation concept was sound.

Test Program Design

The test program matrix is shown in Table XX (Note that Tables and Figures

for this appendix are included within this section). Number of samples are

indicated for each defined sample configuration and test type. Control
samples (containing no graphite augmentation) wcrc also taken from each

laminate billet to both characterize the laminate and to allow relative

performance comparisons between graphite augmented and unaugmented laminate
to be made.

Most tests were to be conducted at room temperatures (65 to 75 degrees

Fahrenheit). Some ramp-to-failure and very low cycle fatigue tests were to

be conducted at temperature extremes of approximately -40 and 120 degrees

Fahrenheit. Tests included compression ramp-to-failure, compression fatigue,

tension stud ramp-to-failure, and tension stud fatigue. All fatigue tests

were to be conducted at a constant stress ratio (R) of 0.1 (R = minimum

magnitude stress/maximum magnitude stress). Fatigue tests were to be

targeted to 10,000, 100,000 and 1,000,000 cycles.

The basic compression sample design was a 2 inch thick by 2 inch wide by 8

inch high laminate block. All fiber was aligned parallel to the major

dimension. The blocks would be composed of approximately 19 Douglas fir

veneer plies (and 18 unidirectional graphite fiber plies if fully

augmented). If augmented, the two materials would be alternated and bonded

with WEST SYSTEM (R) Epoxy. Some specimens were also specified as 'augmented

transition' samples and were to be only partially augmented to simulate the

structural region where graphite fiber is introduced into the laminate.

Details are illustrated in Figure 70 which also describes the tension stud

sample and the general compression sample.
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Strain measurements would be taken, on a limited basis, during compression

ramp tests. The strain values would be used to confirm the elastic modulus

of [ully augmented and unaugmented samples. Modulus values of 2 mil|ion psi

and 3 million psi were expected for the unaugmented and fully augmented

laminates respectively.

Tension stud samples were designed with 48 inch laminate block lengths and

with a 0.75 inch diameter, high strength steel rod, with rolled threads,
bonded into each end of the block as illustrated in Figure 70. The threaded

steel rod studs would serve to introduce the load to the laminate block.

This would simulate the interaction between the laminate and more

sophisticated load take-off stud designs (such as Design 5). To match the

unaugmented and augmented laminate stiffnesses surrounding the threaded rod,
different width and thickness dimensions were specified for the unaugmented

(control) and the augmented laminate tension samples. These dimensions were

to be 2.40 by 2.40, and 2.13 by 2.13 inches respectively.

Sample Fabrication

A total of five laminate billets (designated | through 5), of different

dimensions were fabricated from GBI specified Blade Grade 2 (BG2), 0.1 inch

thick, rotary peeled Douglas fir veneers. BG2 is the second highest
structural classification for ultrasonically screened veneer used by GBI in

wind turbine blade construction. Earlier tests had shown the BG2/Graphite

fiber combination yielded the elastic modulus desired, namely 3 to 3.2

million psi. The principal unidirectional graphite fabric used was ORCOWEB

Graphite (4.75 oz./sq, yd. and 0.010 inches dry thickness) for the

augmentation in billets l, 2, 4, and 5 which are detailed in Figure 71. Also

used, but for fewer samples was FIBERITE Style W-1705 (5.86 oz./sq, yd. and

0.015 inches dry thickness) for the augmentation in billet 3 which is also

detailed in Figure 71. Earlier tests had suRgested that the FIBERITE Style

W-1705 may have degraded fatigue performance, perhaps due to abrasion from

the fiberglass fill yarns which are used to hold the fabric together. The

ORCOWEB fabric has a less 'compromising' construction with no interweaving

of fill fiber. The two fabrics are illustrated in Figures 72 and 73. The

adhesive used in all samples was WEST SYSTEM (R) 105 Epoxy Resin and 206

Hardener. Billets were laminated under 20 to 24 inches Hg of vacuum.

Veneers for each billet were conditioned to average wood moisture contents

of 5 to 8 percent. The veneers were taken at random from available BG2

_nventory.

To minimize variation among test sample groups, each laminate billet was

designed so that a large dispersion of variable groups would be fabricated

from the same material. Furthermore, veneers were split lengthwise from

billets l, 2, and 3. One part of the split veneer was utilized for the

augmented portion of the billet while the remainder went into the

nnaugmented portion of the billet. Again, this was done to minimize the

influence of wood fiber variation. This scheme is i]lustrated in Figure 71.
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Testing Methods

Tests were conducted both at GBI's Materials Test Laboratory and at the

University of Dayton's Structural Test Laboratory (under GBI Purchase Order

No. I1674). At GBI's facility, an MTS (model 810.14-2) two column, ii0,O00

pound load capacity, servo-hydraulic, closed loop test system was utilized

to perform all tests. At the University of Dayton, a similar MTS system (STL
Machine No. 2), with 50,000 pound rated load cell and hydraulic actuator,

was utilized to perform all tests. Calibration of both system's electronics

for accuracy of load, stroke, and strain measurements was conducted within 6

months of all tests. Typical setups are shown in Figures 74 and 75.

Five minute ramp-to-failure tests were conducted per ASTM Standard D198. The

selected ramps were 8000 pounds per minute for unaugmented compression

samples, 12,000 pounds per minute for augmented compression samples, 6000

pounds per minute for unaugmented tension stud samples, and 8000 pounds per

minute for augmented tension stud samples. Tests were conducted at room

temperatures ranging from 65 to 75 degrees Fahrenheit. A uniform failure
criteria of 0.2 inch actuator deflection (from start of ramp) was

established for compression tests while a similar criteria of 0.5 inches was

applied to tension stud tests.

A knife edge extensometer was used over a typical gage length of 2.0 inches,

on randomly selected compression samples, for measurement of strain. A total

of 13 augmented and 9 unaugmented samples were evaluated for strain.

All fatigue tests were conducted at a constant stress ratio of O.l. An 8 Hz

8inusoidal load was typically applied to compression fatigue samples, while

tension stud fatigue samples were typically subjected to a 4 Hz sinusoidal

load. All fatigue tests were conducted under closed-loop load control.

Progressive damage could, in most cases, be monitored via measurement of

peak-to-peak actuator movement as a constant peak-to-peak load was applied

to the sample. This feature was useful in monitoring failure trends and

aided in identifying runout tests (tests which were excessively

outperforming a failure prediction) which eventually required termination.

Failure criteria identical to those for ramp-to-failure tests were used for

fatigue samples. All fatigue tests were conducted at room temperatures

ranging from 65 to 75 degrees Fahrenheit.

To minimize the cyclic fatigue stress imposed on the threaded rod used in

tension stud tests, nuts were used to lightly pretension the rod against the

test grips.

High and low temperature compression tests were carried out by allowing the

samples to stabilize in controlled temperature environments. The samples

would then be individually removed from the conditioning environment and

placed in an insulating jacket before being put between the test platens.

When possible, post failure temperature measurements were taken. Although
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this procedure did not precisely maintain constant specimen temperature, the

results still reveal the general performance trends at temperature extremes.

Test Results and Conclusions

Augmented and unaugmented samples were manufactured from the same veneers,

therefore relative comparisons of results, without normalizing wood moisture

content (WMC) to a standard level, are valid. For a limited number of failed

ramp-to-failure compression samples, laminate moisture content (LMC) was

determined. This was accomplished using the oven drying method (ASTM Method

D143, Sections 124 and 125) which involves principally, the following

calculation:

(z) :
100 x (Post Test Weight - Oven Dry Weight)

Oven Dry Weight

Test results for ramp-to-failure compression tests are given in Table XXI.

Test results for compression fatigue tests are presented in Table XXII and

are plotted in Maximum Stress versus Total Cycle (S-N) format in Figure 76.

Test results for compression samples, evaluated for elastic modulus only,

are given in Table XXIIa. These results are summarized and discussed later

in this section.

Test results for tension stud ramp-to-failure tests are given in Table

XXIII. Test results for tension stud fatigue tests are tabulated in Table

XXIV and are plotted in S-N format in Figure 77. These results are

summarized and discussed later in this section.

Test results for extreme temperature compression results are included in

Tables XXI and XXII. Temperature extreme fatigue results are plotted in S-N

format in Figure 78. These results are summarized and discussed later in

this section.

The average control laminate elastic modulus value was 2.2 million psi for

billet 1 samples and 2.0 million psi for billet 2 samples. For laminate

augmented with ORCOWEB Graphite, the average elastic modulus was 3.0 million

psi for billet 1 samples and 2.6 million psi for billet 2 samples. For

laminate augmented with FIBERITE Style W-1705 Graphite, the average elastic

modulus was 3.1 million psi.

Ramp-to-failure compression results are summarized in Table XXV. The control

material for billets i, 2, and 3 performed similarly. This allowed direct

comparisons to be made between the ORCOWEB Graphite (contained in billets 1

and 2) and the FIBERITE Style W-1705 (contained in billet 3). Control

samples from billets 4 and 5, which were partially augmented to simulate

augmented transition material, performed respectively 5 percent below and Ii

percent above billet i, 2, and 3 values.
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Compressive ramp-to-failure results are characterized by relatively low
scatter. Highest coefficients of variation (COV)were seen in the mixed
billet 1 and 2 results. Four trends can be summarizedfrom the results of
these tests.

i. ORCOWEBGraphite augmentation provides a 38 percent static
performance enhancementat room temperature, while the FIBERITE
W-1705augmentation (although based on far fewer samples) showeda
58 percent performance gain.

2. At reduced temperatures (approx. -40 deg. F), the static
performance of control material was enhanced by 26 percent while the
graphite augmentedmaterial static performance increased by an
average of 24 percent. Reference 8 predicts a nominal 31 percent
improvement in performance when going from 68 degrees to -40 degrees
(Fahrenheit).

3. At elevated temperatures (approx. 120 deg. F), the performance of
control material was degraded by 13 percent while the graphite
augmentedmaterial performance dropped by an average of 22 percent.
Reference 8 predicts a nominal 13 percent drop in performance when
going from 68 degrees to 120 degrees Fahrenheit. The large
performance drop for the augmentedmaterial may point to the
dependenceof the graphite on the wood fiber for column support.

4. The ramp-to-failure tests conducted on partially augmented
samples from billet 4 performed slightly better (2%) than the
control material from the samebillet. Samplepop,lations in this
comparison were small, nevertheless the results indicate that the
augmentation transition schemegenerates no adverse stress
concentrating effects for static type loads.

The compression fatigue summary(Table XXVI), suggests somesignificant
trends. Comparing linear regression values from the developed S-N curves at
10,000 and l,O00,O00 cycles showsthat augmentedtransition material
experienced an average 4 percent drop in fatigue performance from that of
control laminate. This was likely due to the stress concentrating effects of
terminated fibers of relatively high elastic modulus within the laminate. On
the other hand, the fully augmentedmaterial performed an average of 44
percent above the control laminate in fatigue. It is also worth noting that
the FIBERITEW-1705augmentedlaminate typically performed near the upper
end of the scatter band, dispelling muchof the concern that interwoven,
transverse glass fiber maycontribute to an accelerated degradation of the
carbon fiber. However, the observed increase in performance was not in
proportion to the increase in graphite material, again indicating that a
limit, in the ability of the woodlaminate to support the increased graphite
content, maybe coming into play.

Comparisons of high and low temperature low-cycle compressive fatigue tests
do show that, at reduced temperatures (approx. -40 deg. F), both unaugmented
and augmentedsamples performed approximately 24 to 27 percent above the
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room temperature trend line. At elevated temperatures (approx. 120 degrees
Fahrenheit) the augmentedmaterial seemedto take a proportionately greater
performance loss (approx. 22 percent) over the loss of unaugmentedmaterial
(approx. 12 percent) when comparing results with room temperature trend
lines. Although the test technique was unrefined, and samples were observed
to be as muchas 20 degrees off of their extreme temperature by the end of
test, these results compareclosely to the ramp-to-failure extreme
temperature results.

The partially augmented(transition) sample fatigue tests yielded results
which were initially a cause for concern. After manufacturing a second
billet (billet 5) of partially augmentedmaterial, it was evident that the
relatively poor results of the billet 4 test samples was due more to weaker
woodf_ber than any other factor. This is evident from the compression
ramp-to-failure results of billet 4 and 5 control samples. Linear regression
fatigue data trends for the partially augmentedsamples show that from
i0,000 to 1,000,000 cycles, partially augmentedlaminate performed on
average at 96%of the control laminate level. Therefore, it can be concluded
that the stress concentrating effect of the terminated graphite fibers is
very small in this configuration in fatigue.

Tension stud ramp-to-failure results are summarized in Table XXVII. The
control samples showedthe performance level of billet 2 samples to be lower
by 14 percent relative to billet 1 samples and billet 3 samples to be lower
than billet 1 samples by 9 percent. This performance level gap was slightly
reduced between billet 1 and billet 2 samples (from 14 to I0 percent)
following the introduction of ORCOWEBgraphite as augmentation fiber into
each sample group. The performance level gap between billet 1 and billet 3
samples was essentially eliminated following the introduction of FIBERITE
W-1705graphite as augmentation fiber into billet 3. If the observed
reduction of variability is a consistent trend for augmentedmaterial, that
would be a significant additional advantage in the use of augmentedmaterial
in stress critical stud applications.

The tension stud fatigue summary,as shownin Table XXVI, was somewhat
obscured by fatigue problems with the high strength steel studs. It can be
seen that failures were steel dominated between i00,000 and 1,000,000 cycles
which resulted in the convergence of augmentedand unaugmenteddata.
Nevertheless, the performance benefits for studs bonded into augmented
laminate are clearly shownat lower cycles. Based on the linear regression
curves of the augmentedand unaugmenteddata sets, from i0,000 to 1,000,000
cycles, studs bondedinto augmentedlaminate perform at an average load I0
percent higher than studs bonded into unaugmentedlaminate. On a basis of
stress level, this performance gain is increased to 39 percent due to the
smaller cross section of the augmentedtension samples.

Upon completion of this concept qualification test program, it was
recommendedto NASAthat the benefits of graphite augmenting of wood/epoxy
laminate were substantial. Therefore, the advanced load take-off stud design
based on such augmentedlaminate could be tested with confidence that the
laminate performance and stud interfacing behavior were sound.
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TABLEXX. - GRAPHITE AUGMENTED WOOD/EPOXY LAMINATE TEST MATRIX

(Number of Samples)

Test

Type

Compression

Ramp-to-Failure

At Room Temperature

Compression

Ramp-to-Failure

at -40°F

Compression

Ramp-to-Failure
At 120°F

Compression Fatigue

Target 104 Cycles

At Room Temperature

Compression Fatigue

Target 104 Cycles

At -40°F

Compression Fatigue

Target 104 Cycles

At 120°F

Compression Fatigue

Target 105 Cycles

At Room Temperature

Compression Fatigue

Target 106 Cycles

At Room Temperature

Control

(No Augmentation)

i,

SAMPLE CONFIGURATION (Reference Figure 70)

Fully Augmented
Lamina te*

17

II

3

Transition Laminate*

(Partially Augmented)

0

5

4

0

2

12(2)**

3(1)**

2

2(1)**

4(1)**

*Unless otherwise noted, augmenting fabric is ORCOWEB Graphite

**Value in brackets is the number of samples using Fiberite W-1705 Graphite
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TABLE XX. (continued) - GRAPHITE AUGMENTED WOOD EPOXY LAMINATE TEST MATRIX

(Number of Samples)

Test

Ty_e

Tension Stud

Ramp- to-Failure

At Room Temperature

Tension Stud Fatigue

Target 104 Cycles

At Room Temperature

Tension Stud Fatigue
Target 105 Cycles

At Room Temperature

Tension Stud Fatigue

Target 106 Cycles

At Room Temperature

Control

(No Augmentation)

SAMPLE CONFIGURATION (Reference Figure 70)
i i

Fully Augmented
Laminate*

6

2

6 (2) **

3

2(1)**

2

*Unless otherwise noted, augmenting fabric is ORCOWEB Graphite

**Value in brackets is the number of samples using Fiberite W-1705 Graphite
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S i d e  B 'Side A 

F igure  72. - ORCOWEB Graphite Cloth (4.75 oz/sq yd, 0.010 in dry thickness) 

F igure  73. - FIBERITE S t y l e  W-1705 Graphite Cloth (5.86 oz/sq yd, 0 .015  
in dry th ickness )  
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Figure 74. - Typical Compression Test Set-Up, Mounted Extensometer Shown 
132 
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FiEure 75. - Typical Tension Test Set-Up
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17.0 APPENDIX E - An Evaluation of Wood/Epoxy Laminate

with Scarf Jointed Plies in Compression

Summary

An exploratory test program was designed and implemented by Gougeon

Brothers, Inc. (GBI) to investigate the performance of wood/epoxy laminate

featuring staggered scarf jointed plies in compression. Tests were conducted

in ramp-to-failure and cyclic fatigue. Variables examined were scarf joint

slope and non-optimum scarfs. The non-optimum scarfs featured joint

overrides or gaps of two different magnitudes.

As expected, shallower slope scarf joints outperformed steeper sloped

joints, particularly in fatigue. Other tests suggest that fairly substantial

scarf overrides degrade compressive fatigue performance insignificantly

relative to ideal joints. On the other hand, gaps or less substantial

overrides seem to degrade performance noticeably relative to ideal joints.

Background

Contract DEN3-260 was awarded with one of its objectives being that of

developing wood composite blade technology. A concurrent DOE/NASA program,

the design of the MOD-SA rotor, was taxing the limits of the wood composite

materials data base. Existing design allowables data were predominantly

established from wood composite samples featuring plies with either no

joints or staggered butt joints. Under fatigue conditions, especially

tension fatigue, it was evident that damage originated frequently in the
butt joints of individual plies.

Within the context of this contract's goals, as well as supporting possible

needs of the MOD-5A rotor, some testing of laminate featuring scarf-jointed

plies was of considerable interest. At the same time, some testing of scarf

jointed plies had been conducted within the framework of the MOD-5A program.

That testing concentrated on optimum 12:1 slope scarfs. It also evaluated,

to a lesser degree, the effect of various quality joints and the effect of

high moisture content on the performance of laminate with scarf jointed

plies. A report of those tests is being generated under the MOD-5A program.

The thrust of this test program was to evaluate scarfs of three different

slopes, nominally 4:1, lO:l, and 16:1. It was expected that this data could

aid in determining whether the expected higher performance of shallower

slope scarfs would justify the increased handling difficulty of veneer with

more damage prone edges. In addition, future tolerancing of manufacturing

processes would be aided by knowing which deviations from optimum assembly

of plies would least adversely influence the performance of the laminated

structure. Therefore testing of I0:i slope scarfs with 0.25 and 0.50 inch

gaps and overlaps was also undertaken.
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Compression tests were proposed primarily due to lower specimen cost.

Nevertheless, compression tests were expected to offer useful insights into

the performance of laminate with scarf jointed p]ies. Compression testing

tends to yield results which are less sensitive to ply joint configuration

than are tension test results.

Test Program Design

The test program matrix is shown in Table XXVII[ (Note that Tables and

Figures for this appendix are included within this section). Numbers of

samples are indicated for each defined sample configuration and test type.

Control samples (containing no scarf joints) were also taken from each
laminate billet to both characterize the laminate and to allow relative

performance comparisons of scarf jointed laminate to be made.

All testing was to be conducted at room temperatures (65 to 75 degrees

Fahrenheit). Tests prescribed included compression ramp-to-failure, and

compression fatigue tests with a constant stress ratio (R) of O.1 (R =

minimum magnitude stress/maximum magnitude stress). Fatigue tests were to be

targeted to IO,O00, 100,O00 and l,O00,O00 cycles.

The basic sample design was a 2 inch thick by 2 inch wide by ]2 inch tall

laminate block. Grain was to be aligned parallel to the major dimension. The

block _ou]d be composed of l q to 20 Douglas lit veneer plies and WEST SYSTEM

(R) Epoxy. The middle three plies would each have a single scarf joint

(except control samples). ]'he middle ply would have a scarf joint centered 6

inches from each end of the sample. Each adjacent ply would also contain a

single scarf joint, staggered on centers 3 inches from the center scarf

joint such that each scarf joint center would be nominally three inches from

the next scarf joint center. This essentially symmetrical configuration, as

shown in Figure /9, simulates a typical volume taken from structural

laminate assembled with scarf joints.

Sample Fabrication

Two billets (designated NA and NB) of test laminate (nominally 90 inches by

24 inches by 2.1 inches) were fabricated from GB[ specified Blade Grade 1
(BGI), ]/lOth inch thick, rotary peeled Douglas fir veneers. BG1 is the

highest structural classification for ultrasonically screened veneer used by
GB[ in wind turbine blade construction. The adhesive used was WEST SYSTEM

(R) lob Epoxy Resin and 206 Hardener. Billets were laminated under 24 inches

(mercury) of vacuum.

Veneers for each billet were conditioned to average wood moisture contents

ot 7.4 and 7.1 percent for billets NA and NB respectively. Although the

veneers were generally taken at random from available BGI veneer inventory,

individual veneers were weighed and assigned to the two billets on an

equitable basis to minimize density variation.
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To further minimize variation among test sample groups, each laminate billet

was designed so that a large dispersion of variable groups would be

fabricated from the same material. This scheme is illustrated in Figure 80.

The scarf joint detail is generalized in Figure 81 for non-optimum scarf

joints.

Testing Methods

Compression ramp-to-failUre and cyclic fatigue tests were all conducted at

GBI's Materials Test Laboratory. An MTS (Model 810.14-2) two column, ii0,000

pound load capacity, servo-hydraulic, closed-loop test system was utilized

to perform all tests. Calibration of the system electronics for accuracy of
both load and stroke measurements was conducted within 6 months of all

tests.

Five minute ramp-to-failure tests were conducted per ASTM Standard D198. The

selected ramp was 7900 pounds per minute. Tests were conducted at room

temperatures ranging from 64 to 72 degrees Fahrenheit. A uniform failure

criterion of 0.2 inch actuator deflection (from start of ramp) was
established.

Compression fatigue tests were conducted at a constant stress ratio of 0.i.

A 6 Hz sinusoidal load was applied to the fatigue test samples while under

closed-loop load control. Progressive damage could be monitored via

measurement of peak-to-peak actuator movement as a constant peak-to-peak

load was applied to the sample. _is feature was useful in establishing

failure trends and aided in identifying runout tests (tests which were

excessively outperforming a failure prediction) which required termination.

A failure criterion identical to that for ramp-to-failure tests was used for

fatigue samples. All fatigue tests were conducted at room temperatures

ranging from 64 to 75 degrees Fahrenheit.

A typical test configuration is illustrated in Figure 82. A typical failed

sample is shown in Figure 83.

On a selected basis, laminate moisture content (LMC), of failed

ramp-to-failure and fatigue specimens, was determined using oven drying

method (ASTM Method D143, Sections 1_4 and 125). LMC is lower than the

expected wood moisture content due to the presence of epoxy adhesive in the

bulk mass being evaluated. This value of wood fiber weight to total laminate

weight typically is 82 percent. Therefore a general conversion of LMC to
wood moisture content (WMC) can be made by multiplying WMC by a factor of

1.22. LMC is computed by the following method:

LMC (Z)=
I00 x (Post Test Weight - Oven Dry Weight)

Oven Dry Weight
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Test Results and Conclusions

Based on available LMC data shown in Table XXIX, it can be seen that little

variation existed from sample to sample. Nevertheless, test result stress

levels have all been adjusted to a nominal WMC value of 12% in an attempt to

reduce the effect of moisture content variation. This adjustment also allows

data to be compared to other wood composite data which has been similarly

corrected. This adjustment is documented at the end of this section.

Test results for ramp-to-failure tests are given in Table XXIX. Test results

for fatigue tests are tabulated in Table XXX and are plotted in Maximum

Stress versus Total Cycle (S-N) format in Figures 84 and 85. These results

are summarized and discussed later in this section.

For the purpose of improving the quality of comparative conclusions, samples

taken along similar longitudinal portions of the billets were targeted to

similar cycles-to-failure. This selection of specific billet locations was

such that near one edge of each billet, samples were typically targeted to

the lowest number of cycles-to-failure while at the other end samples were

typically targeted to the highest number of cycles-to-failure. Because on

billet NA the laminate strip from which low cycle samples were taken was

generally weaker than the laminate strip from which high cycle samples were

taken, the slope of the S-N curves tend to be artificially low. Larger

sample populations and more random sample selection would remedy this.

Ramp-to-failure results are summarized in Table XXXI. The results of control

sample tests reveal a somewhat higher level of performance (4.6%) from

billet NB when compared to billet NA controls. Ramp-to-failure samples

featuring 10:1 scarfs with 0.50 inch overlaps were also tested from each

billet and showed a somewhat more modest (2.1%) performance difference.

Again, NB samples outperformed NA samples.

Ramp-to-failure results are characterized by relatively low scatter even

with small populations. Nevertheless, ramp-to-failure results provide less

dramatic conclusions than do fatigue results. Two trends are detectable:

I. Shallower slope scarf joints seem to offer slightly better static

performance.

2. Overlap defects are better tolerated than are gap defects.

Compression fatigue results as shown in Table XXXII, although also clouded

somewhat by scatter and small populations, suggest more significant trends.

A comparison of non-scarf jointed (control) results to the results from

different scarf jointed plies, is consistent with intuitive expectations of

improved performance with shallower scarf slopes. Comparing linear

regression values from the developed S-N curves at I0,000 and 1,000,000

cycles shows that 4:1 scarfed material performed at 86 percent of the
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control material level. Similar comparisons show i0:i scarfed material
performing at 94 percent of control while the 16:1 material performed at 99
percent of control.

Performance comparisons of i0:i scarfed material with overlaps and gaps also

is consistent with expectations. Samples with 50% scarf overlaps performed

at 96 percent of the level of unscarfed samples using the same comparison

criteria described for the comparison of 4:1, I0:I, and 16:1 scarfed

material. This value is essentially the same as the 94 percent value for

optimum I0:I scarfed material. On the other hand, i0:I scarfed material with

50% gaps performed at 91 percent of the level of unscarfed samples. The net

performance difference between 50% overlapped and gapped samples is 6

percent, in favor of the overlapped samples. Even with the relatively small

sample populations, it is reasonable to view this result to be significant

due to the consistent relationship of the linear regression curves of both
data groups.

Sample populations of I0:i scarfed material with 25% overlaps and gaps were

extremely small, and therefore these results must be interpreted in very

general terms. The samples with 25% gaps and overlaps tended to perform more
in line with the 50% gap samples.

Three conclusions of reasonable significance can be drawn from the fatigue
tests:

i. Compressive fatigue performance of material with 16:1 scarf

jointed plies approaches the performance of material without joints.

I0:i (and steeper) scarf jointed plies show apparent degradations in

compressive fatigue performance.

2. The compressive fatigue performance of material with 50% scarf

joint overlaps is superior to material with 50% scarf joint gaps.

3. The compressive fatigue performance of i0:I scarf-jointed

laminate is not appreciably degraded when the joints are overlapped
by 50% during manufacture.
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ADJUSTMENTOFWOODLAMINATEMECHANICALPROPERTIESFORMOISTURECONTENT

FromReference 8, Pages 4-32 to 4-33:

-[(M-12)/(Mp-12)]
P = P(12) x [P(12)/Pg]

Where:

M = moisture content (%) of wood

Mp= woodmoisture content at which changes in property due to
drying are first observed (for Douglas fir, Mp = 24%)

P = property at woodmoisture content, M

P(12) = property at 12%woodmoisture content

Pg = property for all woodmoisture contents > Mp

P(12)/Pg = constant, K

K(t) = 1.21 (tension)
K(c) = 1.92 (compression)
K(s) = 1.26 (shear)

If:

M(L) = measuredmoisture content of fir/epoxy laminate

M = woodmoisture content = 1.22 x M(L)

P(t) = physical property as tested

Then:

P(12) = P(t) x K
[(1.22 x M(L) - 12)/12]
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18.0 APPENDIXF - Prototype Rotor Manufacturing Plan
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18.1 MANUFACTURINGPLAN- PURPOSE

To provide accurate documentation of processes and procedures used in
fabricating a prototype 90-foot diameter MOD-Orotor as designed under
Contract DEN3-260.

18.2 MANUFACTURINGPLAN- OBJECTIVES

Objectives are as follows:

18.2.1 Demonstrate suitability of processes and procedures for
fabricating and assembling the prototype 90-foot diameter MOD-O
rotor.

18.2.2 Maximize efficient use of resources for fabrication of
prototype rotor

18.2.3 Develop baseline manufacturing plan which could serve as
reference frame for production manufacturing plans

18.3 HARDWAREDESCRIPTION

18.3.1 Description of Rotor

The 90-foot diameter rotor is fabricated from six principal
structural elements. These are namely one high pressure composite
hub half shell, one low pressure composite hub half shell, two high
pressure outer rotor (blade) half shells, and two low pressure outer
rotor half shells. Each pair of half shells will be bonded to each
other, after which fingers shall be cut into the root end of each
outer rotor assembly and into both ends of the hub assembly. The two
outer rotor assemblies will then be bonded to the hub by use of the
finger joints to create an integral rotor structure. Engineering
drawings describing the prototype rotor and associated hardware are
listed in Table XXXIII.

18.4 MANUFACTURINGPROCESSESANDPROCEDURES

18.4.1 Process Specifications

Table XXXIVis a series of process specifications defining each
individual process and procedure required to complete the
manufacturing operations. Included in the process specifications are
specific requirements for inspections and tests for quality
assurance.
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18.5 QUALITY ASSURANCE PLAN

18.5.1 Quality Assurance - General

All veneers utilized within the rotor structure will be either Blade

Grade 1 (BGI) or Blade Grade 2 (BG2) per Gougeon Brothers, Inc.

Materials Specification GMS-O01. All epoxy used (except where noted

in Table XXXIV.) will be WEST SYSTEM Resin (105 BG) and Hardener

(206 BG) in compliance with GMS-O02 (pending final release).

18.5.2 Quality Assurance - Specific

The Manufacturing Process/Quality Specifications in Section 18.4

include specific requirements for quality assurance inspections and
tests. Such activities are checked off by the individuals

responsible for quality assurance as they are performed. Copies of

these specifications accompany and govern all operations of the

project.

18.6 EQUIPMENT, TOOLING, SPECIAL FIXTURES AND FACILITIES

Table XXXIII is a list of equipment, tooling and special fixtures used in

performing work on this project. The list includes descriptions, sources,

specifications, quantities and availability of these items.

The south end of the Bay City manufacturing plant is scheduled for use on

fabrication and assembly work under this project. Figure 86 shows the

location of major equipment and fixtures.

18.7 MATERIALS HANDLING

Material, fabricated items and assemblies are to be moved and transported

using the materials handling equipment listed in Table XXXIII.

18.8 PACKAGING AND SHIPPING

Provisions for packaging and shipping prototype rotor components to the

finger joint machining subcontractor and for final shipment to NASA's
Plumbrook Test site are contained in the Design Drawings (see Table XXXIII).
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18.9 SAFETY

The foremost consideration in all activities is safety. All persons working

on the project shall be provided with on-the-job training covering all

aspects of safety, including:

i. Respiratory protection, involving handling of epoxy mixtures,

sanding and grinding operations.

2. Eye protection at all times.

3. Proper operation of equipment, lift trucks, etc.

4. Wearing of gloves and aprons in handling epoxy coated materials.

5. Fire protection, including no smoking policy and use of and

location of fire extinguishers.

6. Avoidance of injury due to improper lifting or other strenuous

physical activities.

7. Installation of guards on equipment capable of cutting or

pinching.

8. Good housekeeping, work area clean-up, and common sense while on

the job.

18.10 SCHEDULE

Figure 87 is a schedule showing anticipated times to complete various

milestones of the project.
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Drawin$ No.

Prototype Rotor

CF-10-060

CF-10-061

C -10-062

C -10-063

CD-I0-064

CF-I0-066

CF-I0-067

CD-I0-068

CF-I0-069

CF-10-070

CF-IO-071

CF-I0-072

CF-I0-073

CF-I0-074

CF-I0-075

CF-I0-078

CF-I0-079

CF-10-080

CF- 10-081

CF-I0-082

CF-I0-083

CC-I0-084

CC-I0-085

C -10-086

CC-I0-087

CC-I0-090

CD-I0-096

TABLE XXXIII

ENGINEERING DRAWINGS, 90 FOOT, MOD-O PROTOTYPE ROTOR

Drawing Title

Final Design Rotor Planform & Tolerances

Outer Rotor Open Planform

Outer Rotor Lofting

Inner Rotor Lofting

Ice Detector Access Detail & Tip Vent/Tip Weight Detail

Hub - Upwind Configuration

Hub - Downwind Configuration

Outer Rotor Sectional, Station 540, Tip

Outer Rotor Sectional, Station 156 & 348

Hub Internal Structure - High Pressure Shell View

Hub Internal Structure - Low Pressure Shell View

Hub Closed Planform & Finger Joint Details

Hub Section

External Blade Detail - High Pressure Side & Finger Joint Detail
Hub Veneer Schedule

Hub Center Cutout Detail - High Pressure Shell - Full Size

Outer Rotor Instrumentation Details

Outer Rotor Sectional, Station 252 & Instrumentation Enclosure Detail

Outer Rotor Sectionals, Stations 372 & 468

Outer Rotor Pressure Tap Sectional, Station 276

Outer Rotor Pressure Tap Sectionals, Stations 396 & 492

Hub-Crossgrain Fasteners - Concept "A" - Preliminary

Hub-Crossgrain Fasteners - Concept "B" - Preliminary
Outer Rotor Veneer Schedule

Final Shipping Configuration

Pre'liminary Shipment Configuration

Finger Joint Assembly Details

Equipment, Toolin$ and Special Fixtures

CD- 10-065

CF-I0-088

CF- 10-089

CD- 10-091

CD-I0-092

CC-I0-093

CD-I0-094

CF-I0-095

CB- 10-097

CF-I0-098

CF-I0-099

Twist Gauge Detail

Aft Bunk for Final Shipment

Forward Bunk for Final Shipment

Bunks for Preliminary Shipment of Blades

Bunks for Preliminary Shipment of Blades

Handling Provisions

Hub Mold Schematic

Outer Rotor Mold - Schematic (L.P. Mold Shown)

Sleeve Installation Schematic - Exploded View

Hub Fastener Sleeve Installation Hardware Details

Splice Joint Assembly - Tip Jack
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